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1 Introduction

Fixed effects estimation of average treatment effects has been predominantly utilized for
program and policy evaluation. For static panel data models where slope heterogeneity is
uncorrelated with treatment effects, standard fixed and time effects (FE-TE) estimators are
consistent and if used in conjunction with robust standard errors lead to valid inference
in short 7' (time dimension) panels when the number of cross sections (n) is sufficiently
large. However, when the slope heterogeneity is correlated with the treatment and/or control
variables the FE-TE estimators (also known as two-way fixed effects) become inconsistent
even if both 7" and n — oo[] Such correlated heterogeneity arises endogenously in the case
of dynamic panel data models considered by [Pesaran and Smith| (1995) even if the slope
heterogeneity itself is purely random.

In the case of static panels, correlated heterogeneity could arise when treatment effects
are correlated with the treatment itself and/or the control variables. For example, in es-
timation of returns to education, the choice of educational level is likely to be correlated
with expected returns to education. In a review of active policies in labor markets, Crépon
and Van Den Bergl (2016 emphasize that when estimating the average impacts on work-
ers’ productivity and earnings, correlated heterogeneity should be accounted for, to better
encourage enrollment in training programs. [Banerjee et al. (2015)) also consider identifica-
tion and estimation of heterogeneous treatment effects in the case of micro-credit evaluation
programs, and [Bastagli et al.| (2019) consider similar issues in studies of anti-poverty cash
transfer programsf’| In a recent survey [de Chaisemartin and D’Haultfoeuille| (2023) highlight
the importance of allowing for correlated heterogeneity and draw attention to the misleading
inferences that can result when FE-TE estimates are used in the case of heterogeneous policy
effects.

Pesaran and Smith| (1995) proposed mean group (MG) estimation for dynamic heteroge-
neous panel data models, where by construction represent examples of correlated heterogene-
ity. It was later shown that for panels with strictly exogenous regressors, the MG estimator is
\/n-consistent in the presence of correlated heterogeneity even if T is fixed as n — 0o, so long
as T' is sufficiently large such that at least second order moment of the MG estimator exists.
However, when T is ultra short such that 7' is close to the number of regressors, k, the MG

estimator could fail. As shown by (Chamberlain| (1992)) one needs T to be strictly larger than

!The concept of the correlated random coefficient model is due to Heckman and Vytlacil (1998).
Wooldridge, (2005) shows that FE-TE estimators continue to be consistent if slope heterogeneity is mean-
independent of all the de-trended covariates. See also condition given below.

2Reviews of recent advances in econometric methods for heterogeneous treatment effects of binary variables
can be found in [Athey and Imbens| (2017)) and |Abadie and Cattaneo| (2018]).



k for regular identification of average effects under correlated heterogeneityﬂ Chamberlain
(1992) calculated efficiency bounds for models defined by conditional moment restrictions
with a nonparametric component, and proposed a /n-consistent Generalized Method of Mo-

ments (GMM) estimator for the mean of correlated random coefficients in panel data models

provided that certain rank and moment conditions holdEl See also [Bonhomme| (2012) and

Arellano and Bonhomme| (2012). Assuming the errors follow autoregressive moving average

processes, |Arellano and Bonhomme| (2012)) provide rank conditions under which the GMM

estimators they propose for variances and densities of correlated random coefficients can be
regularly identified.

The above papers adopt the GMM approach to address identification and estimation of
average treatment effects. Some researchers consider other regular estimators by imposing

additional restrictions on the correlation between heterogeneous coefficients and regressors.

‘Wooldridge (2005) proposes an alternative estimator for models with nonlinear individual-

specific unobserved effects, where he imposes a condition that random coefficients are mean
independent of the idiosyncratic deviations in regressors. To estimate the average effects of
binary treatment variables for the sub-population with no time variations in treatment status,
explicitly models selection into treatment. Assuming random coefficients are
independent of regressors, Lee and Sul (2022)) apply a double-sided trimming scheme to the
MG estimators for static panels with common correlated effects developed by

Pesaran| (2015), so as to eliminate effects of outlying individual estimates with too small or

too large regressor sample variances.
This paper considers identification and estimation of average treatment effects in ultra

short linear panel data models with continuous covariates, where 1" could be as small as k.

Building on the pioneering work of |Chamberlain| (1992)), (Graham and Powell| (2012) focus on

panels with T" = k, where identification issues of time effects and the mean coefficients arise
especially when there are insufficient within-individual variations for some regressors. They
derive an irregular estimator of the mean coefficients by excluding individual estimates from
the estimation of the average treatment effects if the sample variance of regressor in question
is smaller than a given thresholdﬂ Exploiting the sub-population of “stayers”with no time

variations in regressors, they then propose an estimator of time effectsﬂ More recently

3An unknown parameter, 3, is said to be regularly identified if there exists an estimator that converges
to 3, in probability at the rate of y/n. Any estimator that converges to its true value at a rate slower than
\/n is said to be irregularly identified.

*The GMM estimator proposed by |Chamberlain| (1992) turns out to be the same as the MG estimator.
See equation (4.8b) in |Chamberlain| (1992).

°The trimming idea of Graham and Powell has also been used recently by |[de Chaisemartin et al.| (2023))
for identification of the average slopes of switchers’ potential outcomes with many “near stayers”.

YGraham and Powell (2012)) establish identification results based on moment equations conditional on the
sub-population of “stayers”, namely individuals with no time variations in their realized covariates. But in




and Ura/ (2021) propose an alternative procedure to deal with the possibility of many stayers
and/or slow movers in the panel. They consider various distributions of within-variations
and use local polynomial regressions to provide robust inference.

In this paper, we first derive asymptotic properties of MG and FE estimators in large n
and short T" heterogeneous static panel data models, and provide sufficient conditions under
which MG and FE estimators are regular, in the sense that they are y/n-consistent. In cases
where these conditions are not met, we propose a new trimmed mean group (TMG) estimator
which makes use of additional information on trimmed units not exploited by |Graham and
Powell (2012). In effect, information on all units (whether subject to trimming or not) are
included in the computation of the average treatment effect. Following the literature, the
decision on whether a unit ¢ is subject to trimming is made with respect to the determinant
of the sample covariance matrix of the regressors, denoted by d;, and the individual estimates

@ where d,, = n~'37"_,d;, and a measures

for unit ¢ are trimmed uniformly if d; < a,, = d,n~
the rate of trade-off between bias and variance of TMG. Our asymptotic derivations suggest
setting a close to 1/3. Also noting that d;/d,, is scale free, our choice of trimming threshold,
ay, does not involve any other tuning parameters.

We also consider heterogeneous panels with time effects and develop two new estimators
of the average treatment effects in two-way fixed effects regressions, which we denote by
TMG-TE and TMG-C, corresponding to cases where T" > k and T > k, respectively. The
TMG-TE estimator is based on joint estimation of time and average effects, whilst the TMG-
C estimator follows |[Chamberlain! (1992) and eliminates the time effects before estimating the
average treatments, which is possible only if 7" > k. We derive the asymptotic distributions of
TMG-TE and TMG-C estimators under fairly general assumptions but require the identifying
condition that the non-zero dependence between heterogeneous slope coefficients and the
regressors is time-invariant. Note that this condition trivially holds in the case of FE-TE
estimators whose validity requires zero dependence between the slope coefficients and the
regressors.

As noted above the presence of heterogeneity by itself does not invalidate the use of the
FE-TE estimator which continues to have the regular convergence rate of \/n. The prob-
lem arises when slope heterogeneity is correlated with the covariates, such as the treatment
variable. It is, therefore, important that before using the FE-TE estimator the assumption
of uncorrelated heterogeneity is tested. To this end, we also propose Hausman-type tests
of correlated heterogeneity by comparing the FE and FE-TE estimators with the associated
TMG estimators, and derive their asymptotic distributions under fairly general conditions.

The earlier Hausman tests of slope homogeneity developed by Pesaran et al.| (1996]) and Pe-

estimation, a sub-sample of “near stayers”is used instead.



saran and Yamagatal (2008)) are based on the difference between FE and MG estimators and
do not apply when T is ultra short.

We also carry out an extensive set of Monte Carlo (MC) simulations to investigate the
small sample properties of the TMG, TMG-TE and TMG-C estimators and how they compare
with other estimators, including the trimmed estimators proposed by Graham and Powell
(GP) and Sasaki and Ura (SU). The MC evidence on the size and empirical power of the
Hausman-type tests of correlated heterogeneity in panel data models without and with time
effects is provided, and the sensitivity of estimation results to the choice of the trimming
threshold parameter, «, is also investigated. The MC and theoretical results of the paper
are all in agreement. The TMG and TMG-TE estimators not only have the correct size but
also achieve better finite sample properties compared with other trimmed estimators across
a number of experiments with different data generating processes, allowing for heteroskedas-
ticity (random and correlated), error serial correlations, and regressors with heterogeneous
dynamics and interactive effects. The simulation results also confirm that the Hausman-type
tests based on the difference between FE (FE-TE) and TMG (TMG-TE) estimators have
the correct size and power against the alternative of correlated heterogeneity.

As an empirical illustration, we re-visit the example considered by GP who provide es-
timates of the average effect of household expenditures on calorie demand using a balanced
panel of n = 1,358 households in poor rural communities in Nicaragua over the years 2001—
2002 (T' = 2) and 20002002 (T" = 3). Comparing the FE and TMG estimates, for panels
with and without time effects, we find that the Hausman tests reject the null of uncorrelated
heterogeneity, thus shedding doubt on the use of FE or FE-TE estimates for this application.
For the ultra short panel with 7' = 2, the FE and TMG estimates of the average treatment
effects are 0.6568 (0.0287) and 0.5623 (0.0425). The figures in brackets are standard errors.
Given the result of the Hausman test, most likely the FE estimate is biased upward, with a
much lower standard error. These results do not change if we allow for time effects. Turn-
ing to the other trimmed estimators, the GP and SU estimates, 0.4549 (0.1003) and 0.6974
(0.1689), respectively, are wide apart, and both have larger standard errors as compared to
the TMG estimate. Again these estimates are not much affected by allowing for time effects.
But once we consider the panel with 7' = 3 the TMG and GP estimates (with or without
time effects) become very similar, although the TMG estimates continue to be more pre-
cisely estimated. The gap between FE and TMG estimates also becomes closer but remains
statistically highly significant.

The rest of the paper is organized as follows. Section [2| sets out the heterogeneous panel
data model and investigates the asymptotic properties of the MG and FE estimators. Section

considers ultra short 7" panels and discusses the need for trimming as suggested by GP.



The proposed TMG estimator is introduced in Section [4, and its asymptotic properties are
established in Section [f] Section [6] extends the TMG estimation to ultra short panel data
models with time effects, distinguishing between cases where T" > k and T > k. Section
sets out the Hausman-type test of correlated heterogeneous slope coefficients. Section
describes the Monte Carlo experiments and reports the simulation results. Section [J] presents
the empirical illustration. Section [10| concludes. The online supplement develops the test of
correlated heterogeneity for panels with time effects, and provides supplementary information

on Monte Carlo designs and additional Monte Carlo evidence.

2 Heterogeneous linear panel data models

Consider the panel data model where the outcome variable y;; for unit ¢ at time ¢ is explained

linearly in terms of the k x 1 vector of covariates w;;
Vit = Owy + uy, for i =1,2,...,n, and t = 1,2,..., T, (2.1)

where 6; is a k x 1 vector of unknown unit-specific coefficients and wu;; is the error terms.

Stacking by time we have
Yy, =W,0, +u;, fori=1,2 ..n, (2.2)

/ ! /
where Y, = (yz‘17yi2,~~>yiT)» W, = (wilawi%-'-awiT)y and u;, = (Uz‘huz‘m---,UiT)' The

parameter of interest is the & x 1 vector of average treatment effects, 8¢, defined by

0, = plim <n1 Zei> : (2.3)
=1

n—o0

When T > k, 8y can be estimated by the mean group estimator, 0 MG, computed as a simple

average of the least squares estimates of 8;, namely (see |Pesaran and Smith| (1995))

N 1 <X .
o = — 0;, 2.4
MG = ; (2.4)
where
éi = (W;Wz‘)_l (W,zyz> . (2-5)

To investigate the asymptotic properties of the MG estimator when 7' is short and n — oo,

we make the following assumptions:



Assumption 1 (Errors) Conditional on W, (a) the errors, u;, in are cross-sectionally
independent, (b) E(u; |W;) =0, fori=1,2,...,n, and (c¢) E(uwu,|W;)=H;(W,;) = H,,
where H; is a T x T bounded matriz with 0 < ¢ < inf; Ay (H;) < sup; Apae (H;) < C.

Assumption 2 (Regression coefficients) The k x 1 vector of coefficients, 0;, is allowed
to depend on the distribution of W, with rank(W;) = k. This dependence could be (a)
deterministic with 6; fized and bounded or (b) stochastic, with @; jointly determined with
W,.
(a) 0; are deterministic with sup, ||0;]| < C fori=1,2,...,n, such that 0, =n=1Y" 6, —
90, with ||90|| <C.
(b) 8; are independent draws from a distribution with E(0;) = 6y and bounded variances

fori=1,2,....,n, where |6,| < C, and sup, E(|6;]|* < C.

Remark 1 Under Assumption |1, the k x 1 vector of covariates, wy, for i = 1,2,...,n are
strictly exogenous, but it allows the conditional variance of w; to depend on W, and for the

errors, w;, to be serially (over time t) correlated.

Remark 2 Part (¢) of Assumption |1 rules out the possibility of unbounded random vari-
ations in H;, but can be relaxed if instead it is assumed that 0 < ¢ < inf; N2, (H;) <
sup; A2, (H;) < C, with higher order moment conditions on d; = det(W,W,) and ||(W W ,)*||.

max

Remark 3 Assumption |9 is an identification condition for @y. Under Assumption @(b)
where @; follows a random coefficients model, E(én) =0, and n~! Z?:l 0, —, 0.

2.1 Properties of mean group estimator in short T panels

Substituting (2.2) in (2.5) we have
0 =0, + &, (2.6)

where

§ir = Riu;, (2.7)

and R; = W,; (W'W,)~". Averaging both sides of (2.6) over i, we have

Orc=06,+E&,, (2.8)

where . .
0,=n" Z 0;, and £, =n"" Z&T (2.9)

i=1 i=1
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Then under Assumption [I| E (u;|W;) = 0, and hence E(§,;) = E(n™ 'Y &) =
n 'Y " E[RE (u; |[W;)] = 0. Then using E (9Mg> = E(0,) + E(§,;) = 6o,
namely 0,1 is an unbiased estimator of @ irrespective of the possible dependence of 8; on
W ;. However, the MG estimator is likely to have a large variance when 7' is too small. This
arises, for example, when the variance of € , does not exist or is very large. The condi-
tions under which 8¢ converges to @, at the regular n'/? rate are given in the following

proposition:

Proposition 1 (Sufficient conditions for /n-consistency of @MG) Suppose that y;; for
t=1,2,...,nand t = 1,2,....T are generated by model , and Assumptions @ hold.
Then as n — oo, the MG estimator given by is \/n-consistent for fivred T panels if

sup B (d7%) < C, and sup B [||(W;W,)*||f] < C, (2.10)
where d; = det(W. W), and (W W ,)* is the adjoint of W.W .

For a proof see in the Appendix.

Example 1 In the simple case where k = 2, w; = (1,z4), and 8; = (a4, 5;). Suppose
E(uwulx;) = oI fort = 1,2,...,T and i = 1,2,....,n with ; = (x;1, T, ..., i), then
the individual OLS estimator of the slope coefficient, 3; = (x| Myax;) ‘@, Mry,, has first
and second order moments if E (u?) < C and E (d;;?) < C, where d;; = det(z;Mrx;),

My =17 —T '7r7lh, and 77 = (1,1,...,1). In the case where xy are Gaussian distributed

x’

squared variable with T'— 1 degrees of freedom. Hence, E (d_2) (;m’sts if T'—1 >4, or if

T

. . . . 2 . .
with mean zeros and a finite variance, o2, it follows that dL_ = ng” , where x%_, is a Chi-
1T T 1

T > 5. For panels with T < 5, the MG estimator would be irreqular when first and/or second

order moments of some individual estimates do not exist.

2.2 A comparison of MG and FE estimators

Consider a panel data model with individual fixed effects, a;, and heterogeneous slope coef-
ficients, 3,,
Vit = o + Bixiy + uy, for i =1,2,...,n,and t = 1,2,..., T, (2.11)

where x;; is a k' x 1 vector of regressors (k' = k — 1). In matrix notations

y, = ot + X6, + u,, (2.12)



where X; = (x;1, Ti2, ..., ;7). The FE and MG estimators of 3, are given by

n -1 n
Bre = <”_1 Z X;MTXZ‘) (n_l Z XQMT%) ; (2.13)

=1 =1

and

BMG =n! ZBZ’ (2'14)
i=1

where 8; = (X'M;X;) ' X Mry,. In this setting the parameter of interest is given by 8, =
plim, . (n"'>"" | B;). One of the main advantages of the F'E estimator is its robustness
to the dependence between o, and the regressors. 3 g is also well defined even if T'= k so

long as the following standard assumption is met:

Assumption 3 (Data pooling assumption) Let ¥, =n~' > " W, where
U,, = X M7pX,;. ForT >k, there exists ng such that for all n > ny, W, is positive definite,

U, —, Jlrgonfl Y E(¥,) =¥ >0, (2.15)
=1
and
T =T +o,(1). (2.16)

2.2.1 Conditions for \/n—consistency of FE estimator

Under the heterogeneous specification (2.11)) and noting that M7, = 0, we have

+ 0, (n‘lzX;MTuZ) . (217)

=1

BFE — By = ‘i’;l nt ZX;MTX,(@ — Bo)

i=1

Then by Assumption [1} E (u;|X;) =0, and hence E (X;Mru;) = E [E (X! Mru;| X;)] =
E[X;MrE (u;|X;)] = 0. Under Assumptions [1] [2] and [3]

~

Brp — By —p U lim ! Y E(X/MrXm,y).

n—00 -
i=1

where 1,5 = 8; — B¢, and B g 1S a consistent estimator of the average treatment effect, 3,
if .
lim n~' Y B (X{MrXm,) =0. (2.18)

n—00 -
=1

This condition is clearly met if



E[(X{MpX;)n,) =0, (2.19)

for all © = 1,2,...,n, and has been already derived by Wooldridge (2005)[| But it is too
restrictive, since it is possible for the average condition in to hold even though condition
is violated for some units as n — oo. What is required is that a sufficiently large
number of units satisfy the condition . Specifically, denote the number of units that
do not satisfy (]2_19|) by m, = ©(n®) and note that n™* 3" | E (X MrXm,5) = ©(n 1),
and condition &D is met if a,, < 1. But for B rp to be a regular \/n-consistent estimator
of B, a much more restrictive condition on a, is required. Using note that

vn <BFE - 50) = ‘i’;l (”_1/2 ZXQMTme> + ‘i’;l (Tfl/? ZX;MT’MZ) ;

i=1 =1

and /n(Bpp — By) —p 0if n V23" X/M7Xm;5 —, 0. The bias term can be written as

n'/? ZX;MTXZ'THB = n'? Z (XM Xins — E (X MrXin)]
i=1 =1

+n" Y B (X{MrXm,) .

i=1

The first term tends to zero in probability if X MyX iN;p are weakly cross-correlated over

i. For the second term to tend to zero we must have m,n~"2 — 0, or if a, < 1/2.

Proposition 2 (Condition for /n—consistency of the FE estimator) Suppose that

Yie fori=1,2,...n andt = 1,2,...,T are generated by the heterogeneous panel data model

, and Assumptions and@ hold. Then the FE estimator given by is \/n-

consistent if

nV2Y E[XIMrXi(B; — o)l = 0, (2.20)
i=1
and this condition is met if a, < 1/2, with a, defined by m,, = &(n*), where m,, denotes the

number of units that are subject to correlated heterogeneity.

2.2.2 Relative efficiency of FE and MG estimators

Suppose now that conditions (2.20) and (2.10) hold and both FE and MG estimators are

\/n-consistent. The choice between the two estimators will then depend on their relative

"See equation (12) on page 387 of [Wooldridge (2005).



efficiency, which we measure in terms of their asymptotic covariances, given by
Var (ﬁBMG yX) — Q! i U X Mo H,M X,
i=1
and
Var (\/EBFE ]X) = \TIT_LI (n_l i ‘I’ixﬂﬁ‘I’z’m> ‘T’;l
i=1

4+t <n—1 ZXQMTILMTX,) v
i=1
where X = (X1, Xo,..., X)), Q3 = Var(B;|X;) = 0, H; = E(u;u}|X;), and as before
U, = X/ M7rX;, and ¥, =n~ 1Y  ¥,,. Hence

Var (ﬁBMG \X) —Var (\/EBFE ]X) =A,+ B,, (2.21)

where
A, =Q; -0 <n-1 > @Qﬂz) o, (2.22)
=1

and

B, = <n—1 Z\II;CIXQMTHiMTXi\II;:I) 0 <n—1 S XIMrH M X, |,
=1 =1

(2.23)
A, and B, capture the effects of two different types of heterogeneity, namely slope hetero-
geneity and regressors/errors heterogeneity. The superiority of the FE over MG is readily
established when the slope coefficients and error variances are homogeneous across ¢, and
the errors are serially uncorrelated, namely if Q5 = 0 and H; = 0*I7 for all 4. In this case

A, = 0, and we have

Var (\/EBMG |X> —Var <\/ﬁBFE |X) o Zn: o=l _ gt
2 = iz~ tno
=1

g

which is the difference between the harmonic mean of ¥,, and the inverse of its arithmetic
mean, which is a non-negative definite matrixﬂ However, this result may be reversed when we

allow for heterogeneous Q5 = 0, and/or if H; # o*Ir. The following proposition summarizes

8For a proof see the Appendix to Pesaran et al.| (1996).
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the results of the comparison between the FE and MG estimators.

Proposition 3 (Relative efficiency of MG and FE estimators) Suppose that y; for
1=1,2,...,nandt =1,2,....T are generated by the heterogeneous panel data model ,
and Assumptz’ons @ and@ hold, and the uncorrelated heterogeneity condition 18 met.
Then Var <\/ﬁBMG |X> — Var <\/ﬁ[3FE |X> = A, + B, where A,, and B, are given by
and (2.23), respectively. A, is a non-positive definite matriz, and the sign of B,, is
mdeterminate. Under uncorrelated heterogeneity, the FE estimator, B rp, 18 asymptotically
more efficient than the MG estimator if the benefit from pooling (i.e. when B, > 0) outweighs
the loss in efficiency due to slope heterogeneity (since A, < 0).

For a proof see Section of the Appendix.

Example 2 Consider a simple case where k' =1, ¥,, =, and Q = 0?3 are scalars, and

suppose that H;(X;) = E (uu;|W;) = 0%, Ir. then

S O

U

Var (\/EBMG |X> —Var <\/HBFE |X> =— (0% + 02)

where 1, = n~! S Ui In this simple case the MG estimator is more efficient than the

FE estimator even if 0% = 0.

In general, with uncorrelated heterogeneous coefficients, the relative efficiency of the MG
and FE estimators depends on the relative magnitude of the two components in (2.21]). Since
A, =0, the outcome depends on the sign and the magnitude of B,,, which in turn depends

on the heterogeneity of error variances, H;(X;) and ¥,, over i.

3 Irregular mean group estimators

So far we have argued that the MG estimator is robust to correlated heterogeneity, and
its performance is comparable to the FE estimator even under uncorrelated heterogeneity.
However, since the MG estimator is based on the individual estimates, 0, for i = 1,2,...,n,
its optimality and robustness critically depend on how well the individual coefficients can be
estimated. This is particularly important when 7' is ultra short, which is the primary concern
of this paper. In cases where T is small and/or the observations on w;; are highly correlated,
or are slowly moving, d; = det (W.W,) is likely to be close to zero in finite samples for a

large number of units i = 1,2,...,n. As a result, 0, is likely to be a poor estimate of 6; for

11



some 7, and including it in 011 could be problematic, rendering the MG estimator inefficient
and unreliable.

However, as discussed above, 8¢ continues to be an unbiased estimator of 6y, even if 0;
are correlated with W, so long as the stochastic component of w;; is strictly exogenous with
respect to u;;. By averaging over 9Z fort=1,2,...,n, as n — oo, the MG estimator converges
to g if T is sufficiently large such that 8; have at least second order moments for all 7. The
existence of first order moments of ; is required for the MG estimator to be unbiased, and
we need 6; to have second order moments for v/n-consistent estimation and valid inference
about the average effects, 8y. Accordingly, we need to distinguish between cases where 0,
have first and second order moments for all 7, as compared to cases where some 0, may not
even have first order moments. We refer to the MG estimator based on individual estimates
without first or second order moments as the “irregular MG estimator”, which is the focus
of our analysis. We consider the irregular MG estimator both for models with and without

time effects and show how our proposed estimator relates to the literature.

3.1 Graham and Powell estimator

For panels with T' = k, |Graham and Powell (2012) propose a trimmed GMM estimator (de-
noted as “GP”) whereby individual estimates with | det(W )| smaller than a given threshold
value, h,,, are omitted from the estimation of 8y. For now, abstracting from time effects, the

GP estimator can be viewed as a trimmed MG estimator given by

7 >y H{d; > h2}6,
HGP = n 2 .
Zi:l 1{di > h’n}

(3.1)

In the special case where T' = k, d; = |det(WZ-)|2, and the trimming procedure based on
| det(W;)| > h,, is algebraically the same as the one used in (3.1). GP show that to correctly
center the limiting distribution of é(;p, h,, must be set such that (nhn)l/zhn — 0, asn — oo.
For example, for the choice of h, = Cgpn= ¢, it is required that agp > 1/ 3.E] The GP
approach can be viewed as trimming by exclusion and overlooks the information that might
be contained in (W ;W ,)* when d; < h2. In what follows we propose an alternative trimmed
MG (TMG) estimator that makes use of this information.

9See Section 2 of GP and page 2125 where the use of h,, = Con~/? is recommended.
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4 Trimmed mean group estimators

To motivate the TMG estimator we first introduce the following trimmed estimator of 6;,
0, =0, ifd > a,, and 0; =0, if d; < a,,
where as before 8; = (W\W,)"'"W'y,, d; = det(W'W,), 8, = a.*(W'W,;)*W'y,, and
a, = Cpn™ 7, (4.1)

with a > 0, and C,, > 0 bounded in n. The choice of o and C), will be discussed below.

Written more compactly, we have

where 0; is given by

5; = (di ~ @") 1{d; < a,} < 0. (4.3)

We considered two versions of TMG estimators depending on how individual trimmed esti-

mators, 6;, are combined. An obvious choice was to use a simple average of 8;, namely

n

517, = nil Z éz = nil Z(l + 5z)éz; (44)
i=1 i=1
which can also be viewed as a weighted average estimator with the weights w; = (1+6;)/n <
1/n. But it is easily seen that these weights do not add up to unity, and it might be desirable
to use the scaled weights w;/(1+6,) =n~Y(1+§;)/(1+ 0,), where 0, =n~1>"" | §;. Using

these modified weights we consider
n

A 146, ;
_ 1 * _ n
Orue =n Z<1+S>9i_1+5' (4:5)
1 n n

DY

Although the difference between the two TMG estimators is small for sufficiently large n,
it turns out that 9TMG behaves much better in small samples and will be the focus of this
paper.

To relate gn to the GP estimator given by , using the above results we note that

5= (1—m) (z;n 1{d; > mén-) ir (z;n 1{d; < an}@)I) | (46)

Z?:l 1{di > an} Z?:l 1{di < an}
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where 7, is the fraction of the estimates being trimmed

Z?:l 1{d; < an}' (4.7)

T =

Compared to 6, the GP estimator ignores the second term in 1| and hence places zero
weights on the estimates with d; < a,. In contrast, both 0,, and hence 07 place non-zero

weights on all the individual estimates, 0,.

5 Asymptotic properties of the TMG estimator

To investigate the asymptotic properties of the TMG estimator, 9TMC,~, we introduce the

following additional assumptions:

Assumption 4 Fori=1,2,...,n, denote by d; = det (W W) where W; = (w;1, wia, ..., wir)’
1s the T x k matriz of observations on w; in the heterogeneous panel data model .
inf; (d;) > 0, inf; Agin (WiW,)" > ¢ >0, andsup, E [H(W;W,)* 2} < O, where (W/W ;)" =
d; (WIW )" is the adjoint of W.W .

Assumption 5 (Distribution of d;) For i = 1,2,...,n, d; are random draws from the
probability distribution function, Fy(u), with the continuously differentiable density function,
fa(u), over u € (0,00), such that F4(0) =0, fu(a,) < C, and |fy(a,)| < C, where fj(a,) is
the first derivative of fq(u) evaluated at a, € (0,ay).

Assumption 6 (Characterization of correlation between 0; and d;) Fori=1,2,...,n,

the dependence of 0; = (0;1,0:2, ...,0:4) on d; is characterized by (a):
0, = E(0;|d;) + €;, (5.1)
where E(e;|d;) = 0, and sup, F ||&]||* < C. (b): Denote
n; = 0; — 6, (5.2)

and
Y, = E(n;|d;) = Bi{g(d;) — E[g(d;)]}, (5.3)

"and g;(u) for j = 1,2,...,k are bounded and contin-

where g(u) = (g1(u), go(u), ..., gr(w))
wously differentiable functions of u on (0,00), and B; are bounded k x k matrices of fixed

constants with sup, | B;|| < C. (¢) n, are distributed independently over i.

14



Remark 4 Under Assumptionld], by imposing inf; (d;) > 0 and Fy(0) = 0, we do not consider
the case where there is a positive mass of “stayers”in the population, which is the focus of

Sasaki and Ura, (2021)).

Remark 5 Under Assumption[d, d; are distributed independently over i, which also implies
that §;, defined by , are also distributed independently over i.

Remark 6 Under Assumption[t, n; can be written as
n;, = Qr/)z + €, (54>

where 1, represents the part of the heterogeneity of 0; that is correlated with d;, and €;
represents random or idiosyncratic heterogeneity which is distributed independently of d;,
with E(e;) = 0, for all i.

Remark 7 Assumptions [J] and [0 can be relazed by requiring that m; and 0; to be weakly
cross-sectionally correlated. The cross-sectional independence assumption is maintained to

simplify the mathematical exposition.

Remark 8 Under Assumption|d, it also follows that (1+ 8;)n; are distributed independently
over i, although in general E(§;n;) # 0.

Using (2.6) and (5.2) in (4.2) we have 8; = (146;)80+C;p, where {;p = (146;) (n; + &ir),
and 7y defined by 1} can be written as

~ 1 -
bruic =00 = (15 ) Gur (55)

where C,p =117 Cir- (5.5) can be written equivalently as

Orric — 00 = (1 —il_f(g )> (bn +n! - [p; — E(p;)] + an) ; (5.6)

where . .
b, =n~! n! ””‘ Cand G =ntS g, 5.7
n ; Z 1 + E an an n ; qu ( )
with
(14 d:)m; (14 0:) &ir

p; = 14 E(,) and q;p = T+E@.) (5.8)
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Under Assumptions [d] [f] and [6]6; — E (6;) and p, — E (p,) are distributed independently over

1 with zero means and bounded variances, and we have

n n

S0 —E (3.) =0 " [0 — E@)] = Op(n™7?), and 0"y [p, = E (p,)] = Op(n~"2).

=1 i=1

Furthermore by Lemma E(d;) = O(ay,), E(0;n,) = O(ay), and it follows that

 O(an,)
o= HT[ ZE ] =14 0(an) ~ ") (59)
nd 14+ E(5,) 5, — B (3,)
+ n n - n —1/2
W:1_1+E(8n)+(5n—E(Sn)):HO”(H /2. (5.10)

Also conditional on W, g, are distributed independently with mean zeros, and since §,,, =

0 ar = (g ) e where & = 07 S (14 8) 6 using resuls in
Lemma we have £ (q,,) = 0 and

1

W) Var (éé,nT ) = O(n*1+a).

VCLT (qnt> = (1 +E

Hence, q,, = O, (n~"/27*/2). Using these results in (5.6) we have

Orrc — 00 =0(n™") + 0, (n*“?)) . (5.11)

Hence O7yc asymptotically converges to 6y, so long as 0 < o < 1 as n — oco. The con-
vergence rate of Orrc to Oy will depend on the trade-off between the asymptotic bias and
variance of @76 Though it is possible to reduce the bias of Orvic by choosing a value of
a close to unity, it will be at the expense of a large variance. In what follows we shed light
on the choice of a by considering the conditions under which the asymptotic distribution of

9TMG is centered around 6, so that Var(@TMg) also tends to zero at a reasonably fast rate.

5.1 The choice of the trimming threshold

We begin by assuming that the rate at which Ornic converges to 6 is given by n?, where
7 is set in relation to a. Given the irregular nature of the individual estimators of 8; when

T is ultra short (for example T = k), we expect the rate, n”, to be below the standard rate
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of n!/ 2 Using (5.6 and (5.10) and noting that v < 1/2 (with equality holding only under

regular convergence), we have

n

n" (Brarc — 6o) =m0 [n<1+a>/2 Do lp = E@)]+n Y g | +oy(1)
i=1 =1

(5.12)
To ensure that the asymptotic distribution of éTMG is correctly centered, we must have
n'b, — 0 as n — oo. Since n'b,, = O(n"a,) = O(n?~%), this condition is ensured if v < a.
Turning to the second term of the above, we also note that to obtain a non-degenerate

distribution we also need to set v = (1 — «) /2. Combining these two requirements yields

11—«
( 5 ) < a,ora>1/3, (5.13)
which implies that at most the convergence rate of 01 can be nl/3 , well below the standard
convergence rate, n'/2, which is achieved only if individual estimators of ; have at least
second order moments for all 2. In practice, we suggest setting o at the boundary value of

1/3 or just above 1/3, which yields the familiar non-parametric convergent rate of 1/3.

5.2 Trimming condition

The condition o > 1/3 whilst necessary, it is not sufficient. It is also required that the
asymptotic variance of n” (9TMG — 0y ) tends to a positive definite matrix. To this end,
setting v = (1 — ) /2 we first write (5.12)) as

n(=e)/2 <éTMG - 90) =n{""p, + Zpn T Zgnr + 0p(1),

where z,, = n~UT9/23" [p. — E(p,)], and z,,r = n~F925"" g, Recall also that
n=/2p, = O (n'=3*/2) which becomes negligible since a > 1/3, and under Assumption
|§|, p; are cross-sectionally independent and we have Var (z,,) = n~*[n~' 3"  Var (p,)] =

O(n™%). Since E (2z,,,) = 0, it follows that z,, —, 0 at the rate of ay/*as n — oo, and hence

n(lfa)/2 (éTMG — 00) = Zq’nT + Op(n*a/z) + 0p(1).

The first term can be written as z,,r = n(l=%/2 (m) &5 - By (A.1.14) of Lemma

_ )
A.2|and recalling that E (6,) = O(a,), we have Var (zq,r) = nt= < ) O(n=11e)

1
140(an)

10T his issue has also been addressed by |Graham and Powell| (2012)) and Sasaki and Ural (2021)).
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= O(1), and the asymptotic distribution of 071 is determined by that of z,,7r. Under
Assumption I conditional on W;, g;; are independently distributed over ¢ with zero means

and z,,r tends to a normal distribution if lim,, o, Var (z,,r) is a positive definite matrix.

Using (A.1.13) of Lemma we note that

1 ’ e ,
Var (zgnr) = (W) {n ZE[l{di>an}RiHiRi]}

i=1

1 2 —1-a & —2 2 ’
+ (m) {” > e E[di1{d; < an}RiHiRi}},(aM)

=1

which can be written equivalently as

Var (zgnr) = ct [1 + F (50}72 [n_l z”: Ela,1{d; > an}R;HiRi]]

+C M1+ E (3, [ Za [d?1{d; < an}RQHZ-Ri]] . (5.15)
By (A.1.15) in Lemma [A.2] E[n 'Y " a,'d?1{d; < a,}R;H;R;] = O(a,ll/z), and since

E (6,) = O(ay) it then follows that (recall that 0 < C,, < C)

n—oo n—o0

lim Var (z4nr) = C! lim [n ZE (a,1{d; >an}R’HR)]

To establish conditions under which lim,_,. Var (z,,r) > 0, note that a k x k symmetric
matrix A is positive definite if p’Ap > 0, for all non-zero vectors p € R*. Accordingly,

consider
! Z a,1{d; > an}R;HiRi] p=n"' Z ap1{d; > a,}yp' R, H;R;p,
i=1 1=1
for some p such that p’p > 0. Note that

n n

n™ Y anl{d; > a,}p' REH;Rip > n™" Y a,1{d; > a,} (p'R{R;p) Apin (H)

i=1 =1
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and since R'R; = (W'W,)™" = d;'(W!W,)*, then

n

P %Z ap1{d; > an}RQHiRZ-] p=(p'p) % > <a—”) 1{d; > an Y Amin [(WIW)*] Apin (H) -

d.
i=1 i=1 v

n

But by assumption inf; Ay, (H;) > ¢ > 0, and inf; Ay [(WIW,)*] > ¢ > 0, (see Assump-
tions [I] and [4). Hence, a necessary and sufficient condition for Var (z4,r) to tend to a

positive definite matrix is given by
i -1 5: n ‘
7}1—{20 [n > (dz) 1{d; > an}] > 0. (5.16)

Assumption 7 (Trimming condition) d; and (W.W)* are jointly distributed such that

nh_>nolo n! ;E {(Z—?) 1{d; > an}l >0 (5.17)
where a, = C,n=%, for a >1/3 and 0 < C,, < C.

Theorem 1 (Asymptotic distribution of TMG estimator) Suppose fori =1,2,..,n
and t = 1,2,..,T, yu are generated by the heterogeneous panel data model (2.3), and As-
sumptions -E?] hold. Then as n — oo, for a > 1/3, we have

n(1=0)/2 (éTMG _ 90> Sa N (04, V), (5.18)

where Oy is given by (4.5), and

n

2
1
Vo= lim | ——— | n-0+o) VR H.R. '
o= lim <1+E(5n)) n ;:1 E[(1+46;)°R;H;R;] , (5.19)

where H; = H{(W;) = E (u,|W;), Ri = W, (WW,)™', E(3,) = n 'S, E(3)),
(1+6,)* =1{d; > an} + a,*d?1{d; < a,}, and d; = det (WW).

5.3 Robust estimation of the covariance matrix of the trimmed
MG estimator

As with standard MG estimation, consistent estimation of Vg using ((5.19) requires knowledge
of H; which cannot be estimated consistently when T is short. Here we follow the literature

and propose a robust covariance estimator of Vy which is asymptotically unbiased for a wide
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class of error variances, F (u;u,|W;) = H;(W;), thus allowing for serially correlated and

conditionally heteroskedastic errors. The main result is summarized in the following theorem.

Theorem 2 (Robust covariance matrix of TMG estimator) Suppose Assumptions -E)]
hold, and 0 is estimated by Ornic given by . Then as n — oo, for a > 1/3,

i [ ()] = i [ 1730 (0 i) (3.~ | o

n—oo n—+00 -
i=1

/

and Var <9TMg> can be consistently estimated by n~? Z?:l (éz — éTMg) (éz — 9TMg> )
See Section of the Appendix for a proof.

Remark 9 Following the literature on MG estimation here we also consider the following

bias-adjusted and scaled version

—_— 1 n

Va?“(éTMG) = n(n— 1)1+ 5n)2 Z (éi - éTMG) <éi - éTMG>,- (5.21)

=1

The above results can be readily extended to panel data models with time effects.

6 Ultra short panels with time effects

Allowing for time effects the panel data model (2.11)) can be written as
Yir = Qi + Gy + T B; + i, (6.1)

where ¢, for t = 1,2,...,T are the time effects. Without loss of generality we adopt the
normalization 74.¢ = 0] where ¢ = (¢, by, ..., 1), and make the following additional

assumption:

Assumption 8
E (wgtnw) =F (w;snw) L forallt,s=1,2,....T, (6.2)

where Nip = Bi — By, and ||B|| < C.

Remark 10 Assumption@ allows for dependence between x; and n,5, but requires this de-

pendence to be time-invariant.

HGraham and Powell| (2012) use the normalization ¢; = 0. The choice of normalization is innocuous for
the estimation of the average treatment effects, 3.
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Remark 11 The irreqular identification of ¢ when T' = k in |Graham and Powell (2012)
is based on moments conditional on the sub-population of “stayers”. Under Assumption [4)
d; > 0 for all i, i.e., there are no “stayers”in the population, this identification strategy
cannot be used. Moreover, GP assume that the joint distribution of (uy,0')" given W does

not depend on t, which is similar to Assumption[§. See interpretations of Assumption 1.1
part (it) on page 2111 in|Graham and Powell (2012).

To estimate 8y = (g, B,)’, initially we suppose ¢ is known. Let

1

Q= (1+6)W;,(WW,)" (6.3)

Then the trimmed estimator of 8; = (ay, 8.) is given by 0;(¢) = Q'(y, — ¢) = 0; — Q' ¢,
and the associated TMG-TE estimator of 8, follows as

n

P =~/

Ornic-_re(¢) =n" Z (1+ Sn)il 0,(¢) = Ornc — Qb

=1

where O7y¢ is given by 1) and

_ 1 . "
Q=173 (n §Q> (6.4)

n

From our earlier analysis, it is clear that for a known ¢, Orvic_r £(¢) has the same asymptotic
distribution as @7 with y, replaced by y, — ¢. We first propose an estimator of ¢ for
the case where T' > k, and then following |(Chamberlain (1992)) we consider an alternative

estimator of ¢ with better small sample properties when 7" > k.

6.1 TMG-TE estimator with T > k

Averaging (6.1]) over 1,
Yot = O + & + T8 + Vo, (6.5)

= _ -1\ ) = _ -1\ = _ -1\ =
where v = n Zizl Vit, Vit = TyMig + Uit, Yor = N Zi:l Yit, Lot = N Zi:1 Lity Uot =

— — _ . . . T
n~tY " uy, and &, = n7t Yy " ay. Averaging over ¢, under the normalization Y, ¢, = 0,

Yoo = O+ E::)OIBO + n! Z fﬁgomﬁ + Uoo, (6'6)
=1
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where §oo = T7! Zthl TJot, Too = T Zthl ZTop and oo = 171 ZtT:l lioz. Subtracting
from (6.5)), yields (noting that (Zo; — Zoo) By = (Wor — Weo) Ho)

by = (Yot — Joo) — (Woy — Woo) Oy — (Vor — Vo), for t =1,2,...,T, (6.7)

where Uop — Voo = (Ut — Uoo) + 1D 0 (@it — a‘:io)/nw. Under Assumptions @ and
Vot — Voo = Op(n~Y/ 2) which suggests the following estimator of ¢,

QASt - (got - goo) - (’lDot - woo)/ éTMG—TE) for t = 17 2a "'7Ta (68)

where
éTMGfTE = éTMG - Q;&’ (6.9)

Stacking the equations in over t =1,2,....,T we have

=M, (g - V_VéTMGfTE) ) (6.10)

where My = Iy — T lrprh, g =n~t >0y, and W =n"1 3" W,. The above system
of equations can now be solved in terms of @7y¢ if (I — MW Q') is non-singular. Under

this condition we have

R L .
b= (IT _ MTWQ;) My (g _ WOTMG) (6.11)
and substituting g?) from | in we have
. _ N1 /a _
brucre = (I - @MW) (Brug — QM) (6.12)

Remark 12 Note that (MTW) Q; and Q;L (MTV_V) have the same k (k < T) non-zero
eigenvalues, det (IT — MTV_VQ;) = det (I;C — Q;MTW> , and if (IT — MTV_VQ;J 18
inwvertible so will (Ik - Q:LMTV_V)

The following theorem provides a summary of the results for estimation of ¢, and 8,

and their asymptotic distributions.

Theorem 3 (Asymptotic distribution of 9TMG_TE and the time effects q?) when
T > k) Suppose that fori =1,2,...n and t = 1,2,....T, y; are generated by , T >k,
Assumptions @ hold, and I, — Q;MTV_V is invertible where Q,, is given by , and

12For a proof see Lemma
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W =n"13" W, Then asn — oo, for a > 1/3,
nt=)/2 <9TMG TE — 90) a N (0, Vorve-re), (6.13)

where 9TMG_TE s given by ,
Vorvma-re = (I, — Gw)_l V(@) (I — GL))_I )

G, = lim, (Q;MTVT/'), and V(@) = lim,,_,o, Var [n(l’“)/QéTMG_TE(qb)} . Also

Q?’ = M (g - WéTMG’—TE) =Mz <2‘7 - XBTMG—TE) :
(a) If plim, ,. MsX =0, we have
Vit (¢ = ¢) = N(Or, M1, M7), (6.14)

. -1 n / _ / _ !
where §, = lim, oo n™" Y " E(viv)), vi = (Var, Vio, ..., Vir)', and vy = ugy + i1m,5.

(b) If plim, .. M7X # 0, for a > 1/3, we have
p(1—a)/2 <(2, _ ¢0> —4 N (07, V), (6.15)

where V g = plim,,_, .. M+ XVar ( (1=a)/2 ,BTMG TE) X' M.

A proof is given in Section[A.3]of the Appendix. Using results similar to the ones employed
to establish Theorem , robust covariance matrices for éTMG_TE and (23 are given by
and , respectively, in Section of the Appendix. In particular, the asymptotic
covariance of ¢ is applicable to both cases (a) and (b) of Theorem , and does not require

knowing if plim M;X =0, or not.

n—oo

Example 3 As an example of case (a) in Theorem@ SUPPOSE Tip = Qi + Uy i, Where Uy 4y
are distributed independently over ¢ with zero means. Then Tot—Too = Uy .ot —Ug 00 —p 0, and
we have plim, , .  M;X = 0. An example of case (b) arises when x; contains an interactive
effect, namely ¢ = iy + T'; f, + Uy . In this case Toy — Too = r (_ft — f) + Uy ot — Uz o0,
where T = n! Z?Zl I' =, T, and it follows that Toy — oo —+, T’ (ft - f) which s non-zero
iof £, varies over time and I' # 0, namely at least one of the factors has loadings with non-zero

means.
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6.2 TMG-C estimator when 7T > k

When T' > k, we can follow (Chamberlain| (1992)) and eliminate the time effects by the de-
meaning transformation M; = It — M7y X (X M7 X ;) ' X .M. Under the normalization
The¢ =0, Mr¢p = ¢, and we have Mry, = M X8, + ¢ + Mru;. Then M, Mry, =
M ;¢ + M ;M ru,;, and averaging over i we obtain

n_lzn:MzMTyl = (n_lzn:MZ> ¢+7’L_12n:MZMT’U,Z (616)

Hence, ¢ can be estimated if M, = n~'>"" M, is a positive definite matrix, without

knowing 6. This requires T" > k, since M, is singular if T = k. Therefore, to implement

the Chamberlain estimation approach we require the following additional assumption:
Assumption 9 For T >k, M, =n"'Y" M;—, M = 0, where
M;=1Ir - M X;(X,MpX,;) ' XMr.

Under this Assumption ¢ can be estimated by

n -1 n
o= () ('S aman ). 617
i=1 i=1
and its asymptotic distribution follows straightforwardly. Specifically, using (6.16)) we have

vn ({bc . ¢> Y <n_1/2 zn: MiMTu,-) , (6.18)

=1

and \/n (&C - ¢0) —4 N(0,V 4.¢), where

Voo =M"lim E <n—1 ZMiMTuiugMTMi) ML,

n—oo
i=1
Since M;Mru; = M ;M1 (y, — ¢), Var <QA§C> can be consistently estimated by

Var (éc) =n~'51, [n > MiMi(y; — dc)(y; - &s(;)’MTMZ-] M,

=1

(6.19)
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Using qAbc, the TMG-C estimator of 8 is now given by

nt ZQ ] . (6.20)

9TMG—C’ — (—5

Also since O7y6-c = Orya—c(@) — Q. (e — ¢), the asymptotic variance of O7y¢_¢ can

be consistently estimated by

— — —

Var <éTMG70> = Var <9TMG70<¢)> + Q;Var ((AﬁC) Q,. (6.21)

where Var ( rva—cof ) =n"t(n—1)"1(1+5,) 2>, <é¢,c - éTMG—C) (0@0 - 9TMG—C>/
and 8;c = Q(y; — d¢).

7 A Hausman-type test of the validity of the FE esti-

mator

As summarized by Proposition [2] the validity of the FE estimator depends on the indepen-
dence of slope heterogeneity, 1,5, = B; — B, from the covariates, X; = (x1, Tio, oy 7).
Here we propose a Hausman-type test of this condition when 7' is ultra short, under the null
hypothesis

Ho: E (n;g|@) = 0, for all i and ¢. (7.1)

It is clear that the homogeneous alternative, m,5 = 0, for all 7, and the uncorrelated alter-
native, £/ [(X;MTXZ)nzﬁ} = 0, for all 7, are both implied by Hy. But a less restrictive null
can also be entertained by allowing F (nw |Xz) #0, fori=1,2,...,n, so long as a, < 1/2,
namely the number of violations of the null over the units i = 1, 2, ..., n is relatively few. This
is in line with condition {) that requires n~'/2 S E (X;MTXmm) — 0, which is the
implicit null of the Hausman-type test. But to simplify the derivations we derive the tests
under Hy.

Consider the FE and TMG estimators defined by and respectively. Then a
Hausman-type test of Hy can be constructed based on the difference Aﬁ = BFE — BTMG
Such a test has been considered by |Pesaran et al.| (1996) and Pesaran and Yamagata (2008)),
assuming the MG estimator has at least the second order momentE;] Here we extend this
test to cover cases when T is ultra short. Also, the earlier tests were derived under the null

of homogeneity (namely n,; = 0, for all i), whilst the null that we are considering is more

13See pages 160-162 of [Pesaran et al.| (1996)), and page 53 of |Pesaran and Yamagatal (2008).
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general and covers the null of homogeneity as a special case.
First recall from ([2.17)) and {) that Bpp — By = \TI;l (13" XiMrv;) and Brue —
1 zz X (1115 ) U X My, where ¥, = n~' S W, W, = X\ M1 X, 0; is given
by , and v; = u; + X;n,5. Also by Assumption , v, —p limy, soon Y0 E(Py,) =
¥ >~ 0, and \il;l — ¥ = 0p(1). Using these results it follows that

~

1 n
VnlAg = 7 Z G M v, + o0,(1),
=1

14+6n

where G| = [\Tl*l — (i) \Ili_xl} X. Under Hy and Assumption I E(vy|G;) = 0 for all
i and ¢, and since by Assumptions |I| and part (c) of Assumption (6}

u; and 1,5 are cross-
sectionally independent, then conditional on X, v; are also cross-sectionally independent

and we have \/nAg —4 N(0,V a) as n — 00, so long as

Va :T}LIQORZE (G'M7E (v | X)) MGy = 152071215 (G'M1V,,M;G;) -

=1 =1

where V;, = H;+ X, Qs X}, and Q3 = E (niﬁngﬁ). Hence Hg = nA;VEAg —d Xy, where
X3, is a chi-squared distribution with k' = dim(3) degree of freedom. Note that V' o can be
written equivalently as Vo =n"1>"" ZtT:1 ZtT/:1 E(g.9./ Vi), where Uy = vy — Uy,

tth

and g, is the t"* column of G'. For fixed T, a consistent estimator of V' a, which is robust to

the choices of H; and €24, can be obtained given by V = + el D S S G Vi,
where Vit = (yit - yio) - ﬁFE(mzt - mio)a Yio = T ! thl Yit, Tjo = 1~ ! thl T, with Ji
being the " column of G’; given by

-1

N _ i 1+5i _

G, = <n 1ZX§MTXi> — (1+Z5 )(X;MTXi) "X (7.2)
i=1 n

Using the above estimator of V' 5, the Hausman-type test statistic for correlated slope het-

erogeneity is given by
~ ~ ~ I~ 1 ~ ~
iy =n (Bre — Bruc) Va (Bre = Bruc) (7.3)

Under the alternative hypothesis that Hy : lim, oon ™'Y » | E (X;MTXm,ﬂ) =Q, -0,
H 3 —p 00, as n — 00, and the test is consistent. The extension of the H 3 test to panel data

models with time effects are provided in Section of the online supplement.
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8 Monte Carlo evidence on small sample properties

Using Monte Carlo (MC) techniques, we now consider the small-sample properties of the
TMG estimator and compare its performance with the FE, MG and GP estimators, as well
as the recent estimator proposed by Sasaki and Ura (SU)E] We also provide MC evidence on
the estimation of panels with time effects. The finite-sample performance of the Hausman-

type test of correlated slope heterogeneity is also examined.

8.1 Monte Carlo designs
8.1.1 Data generating processes (DGP)

The outcome variable, y;;, is generated as
Y = o + ¢y + Bixy + kogey, fori=1,2,...n,and t =1,2,.... T, (8.1)

where we allow for heteroskedastic and serially correlated errors. We generate e;; as first

order autoregressive (AR(1)) processes
1/2
Cit = PieCit—1 T (1 - pi) / Sit) (8.2)

and consider two scenarios for ¢;;, namely Gaussian ¢; ~ ITDN(0,1), and chi-squared, ¢;; ~
11 D% (X2 —2). We also allow the shocks in the outcome equation, denoted by u; = o€,
to be cross-sectionally heteroskedastic. In the baseline model we generate o;; = oy, for all ¢
where 02, ~ I1D3 (14 z2,), with 2, ~ IIDN(0,1). We also consider the robustness of the
MC results to cases where 0% also varies with z;;, as detailed below in Section [8.1.3|
The regressors, x;;, are generated as factor-augmented AR processes

T = il = pia) + Voo + puativr + (1= )P (83)
where uy 4 = 0ig€p, for @ = 1,2,...,n, and t = 1,2,...,7. We generate the individual
effects in zy, vy, as iy ~ IIDN(1,1), with e, ;; ~ I1D(0,1), 0, = 1 (1+22), and z;, ~
ITDN(0,1). When time effects are included in the model, we set ¢, = ¢, fort =1,2,.... T —1,
and ¢, = —T(T —1)/2, so that 7/.¢ = 0.

4Perhaps it should be noted that the SU estimator is intended for a more general setup that allows for
many stayers (units with x;; = @x; for some ¢ # t') which we do not allow in our analysis. We are grateful
to Sasaki and Ura for providing us with their codes written specifically for the case when T'= k = 2.
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8.1.2 Generation of the heterogeneous coefficients

We consider both correlated and uncorrelated effects specifications and generate 8; = (o, 3;)’

ei:(ao)+<%):eo+m, (8.4)
Bo Nis

where n; = YA + €;, with ¥ = (¥,,15)" and €; = (€ia, €i). To generate correlated effects
we set \; to be a function of the innovations to the z;; process:
B egzMTeix —F (ngMTeiz)

A = . 8.5
\/VCLT' (egxMTe,;x) ( )

Since €;; = (€41, €xyi, - €xyr) ~ 11D(0, I7), it follows that A; is 71D(0,1)[] The ran-
dom components of n;, namely €;, are generated independently of W; = (77, ;), as € ~
IIDN (0,V.), where V. = Diag(o?,,0%;). Namely,

e €

2

E("h) =0,and V,, = E(nmé) = < G

Oap U%

Oop

>=¢W+V9

The degree of correlated heterogeneity is determined by 1p1)’, and it is zero if ¥ = 0. Also
Cov(ay, 3;) = 0ap Will be non-zero when both v, and 15 are non-zero. Specifically o2 =

Y2 402, 0ap = Yaths, and 03 = @/J% + 025. Therefore, the correlation coefficients of 8; and
\i are given by p., = Corr(a;, \i) = ¥, /\/V%, + 02, and

Vs

ps = pax = Corr(B;, i) = T (8.6)
wﬁ + 0_6[3
Solving the above equations for ¢, and 5, we have
2 1/2 2 1/2
Paxr pﬁ)x
QZ](:V = (—) Ocas and ¢ == O¢B- (87)
- Pix ? 1- /O,%’)\ ’

Also recall that o2 = ¢7 + 02, and 0% = ¥ + 02, then 02, = (1 — p2,)02, and o2y =
(1 — p3y)o3. Hence, the key drivers of heterogeneity are o2, 03, pZ,, and p3,. The scaling
parameter k in is set to achieve a given level of overall fit, PR?, given by in
Section of the online supplement.

Section [8.1.3| summarizes parameters and details of the baseline model and the other ex-

15Tn Section of the online supplement, we show that when x;; is serially independent with no interactive
effects (p;, = 0 and v,, = 0), then \; can be written as a standardized version of d; = det(W W ).
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periments where we allow for heterogeneity in the autoregressive processes assumed for {u;;}
and {z;;}. We also consider cases where {z;} is generated with and without an interactive
factor. All estimations are based on R simulated observations <yz(: ), SL’Z(: )) Jforr=1,2,...  R;
1=1,2,...,n;and t =1,2,....,T.

8.1.3 Baseline and other experiments

For all experiments we set ag = f; = 1, 02, = 0.2, and o3 = 0.5, with Corr(a;, ;) = 0.25,
and experiment with two levels of fit: PR? = 0.2 and 0.4. We also consider two options
when generating e, ;;, the shocks to the x;; process, namely Gaussian, e, ;; ~ ITDN(0,1),
and uniformly distributed errors, e, s = v12(3: — 1/2), with 3;; ~ IIDU(0,1).

For the baseline experiments, we set PR? = 0.2, generate the errors in the outcome
equation as chi-squared without serial correlation (p,, = 0 in (8.2))). For z;, we allow for
heterogeneous serial correlation, with p,, ~ [1DU(0,0.95), but did not include the interac-
tive effects in z; (setting v;, = 0 in (8.3)). We consider both uncorrelated and correlated
heterogeneity and set pg, defined by (8.6)), to (a) zero correlation, ps = 0, (b) a medium level
of correlation, pg = 0.25, and (c) a high level of correlation, ps; = 0.5. For each choice of
ps, the scalar variable, x, in the outcome equation, , is set such that PR2 = 0.2, on
average. This is achieved by stochastic simulation for each 7', as described in Section
of the online supplement.

To check the robustness of the TMG estimator, the following variations in the DGP of the
errors and regressors are considered. When the errors in y;; are serially correlated, we generate
Pie ~ 1IDU(0,0.95), and e;o ~ [IDN(0,1) for all i. When there is an interactive effect in
{2y}, v;, ~ IIDU(0,2) and f, = 0.9f,_1 + (1 —0.9%)"20,, for t = —49, -48,...,—1,0,1, ..., T,
where vy ~ ITDN(0, 1), with f_50 = 0.

To examine the relative efficiency of TMG and FE estimators, we set ps = 0 (uncorre-
lated heterogeneity) but allow for error heteroskedasticity to be correlated with the processes
generating x;;. We consider the following two scenarios: (a) cross-sectional heteroskedastic-

ity, 02 = A2, for all i and ¢, where ); is given by (8.5); and (b) cross-sectional and time

2

. . . 2 _
series heteroskedasticity, o3 = e ;,

for all 7 and ¢, where e, ;; is the innovation to the x;
process. In both cases we have F(c%) = 1, which match the case of randomly generated
heteroskedasticity.

To investigate the small sample properties of the Hausman-type test, we allow individual
effects, a;, to be correlated with x;, irrespective of whether x;; and 3; are correlated. Recall

that FE and MG estimators are both robust to the correlation of x; and «;. The focus of

16When there are feedbacks, we generate x;; or e; for t = —49,—48,...,—1,0,1,...,T, then drop the first
50 observations.
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the Hausman-type test is on the degree of heterogeneity of 3, and the nature of correlation

between 3, and x;. We carry out R = 2,000 replications for all experiments.

8.2 Monte Carlo findings
8.2.1 Comparison of TMG, FE, and MG estimators

We first compare the performance of the TMG estimator with FE and MG estimators un-
der both uncorrelated and correlated heterogeneity for the sample size combinations n =
1,000, 2,000, 5,000, 10,000 and T' = 2, 3,4,5,6,8. The TMG estimator depends on the indi-
cator, 1{d; > a,}, where a,, = C,n™ . In view of the discussion in Sectionon the choice of
a, we consider the values of v = 1/3,0.35 and 1/2, and set C,, = d,, =n~' 3" d; > 0, where
d; = det(W,W). This choice of C,, ensures that the value of 1{d; > a,} = 1{d;/d,, > n~*}
is unaffected by the scale of z;;. In what follows we report the results for the TMG estima-
tor with @ = 1/3, but discuss the sensitivity of the TMG estimator to the choice of « in
sub-section [R.2.4

Table (1| reports bias, root mean squared errors (RMSE) and size for estimation of 5. The
first column of the table gives estimates of the fraction of individual estimates being trimmed
as defined by . The left panel gives the estimates under uncorrelated heterogeneity, with
ps = 0, and the right panel reports the results for the case of correlated heterogeneity, with
ps = 0.5. The estimates of m, tend to be quite large for the case of ultra short 7" but fall
quite rapidly as T is increased. For example, for 7' = 2 and n = 1,000 as many as 31.2 per
cent of the individual estimates are trimmed when computing the TMG estimates, but it
falls to 3.2 per cent when 7' is increased to T' = 8. However, recall that the TMG estimator
continues to make use of the trimmed estimates, as can be seen from , and the TMG
estimator shows little bias compared to the untrimmed MG estimator. The TMG and MG
estimators converge as T is increased and they are almost identical for the panels with 7' = 8.
The results in Table [1] clearly show the effectiveness of trimming in dealing with outlying
individual estimates.

Comparing TMG and FE estimators, we first note that in line with the theory, the FE
estimator performs very well under uncorrelated heterogeneity but is badly biased when
heterogeneity is correlated, and this bias does not diminish if n and 7" are increased. When
heterogeneity is correlated, the FE estimator also exhibits substantial size distortions which
tend to get accentuated as n is increased for a given 7. In contrast, the TMG estimator is
robust to the correlation between 3, and d;, and delivers size around the 5 per cent nominal

level in all cases[”]

Y ncreasing PR? from 0.2 to 0.4 does not affect the bias and RMSE of the FE estimator, but results in a
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Figure 1: Empirical power functions for FE and TMG estimators of 5, (E(f8;) = 8, = 1) in
the baseline model without time effects for n = 10,000 and T'= 2,3,4,5
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Notes: For details of the baseline model without time effects, see footnote (i) to Table For the FE estimator,
see footnote (ii) to Table|l} For the TMG estimator, see footnotes (ii) and (iii) to Table

higher degree of size distortion under correlated heterogeneity. Compare the results summarized in the right
panel of Table [[ and Table [S.4} respectively, in the online supplement.
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Figure|[l| shows the plots of the empirical power functions for TMG and FE estimators for
n = 10,000 and T = 2, 3,4 and 5. The left panel gives the power functions for the case of un-
correlated heterogeneity (pg; = 0), and as can be seen, both estimators are centered correctly
around 3, = 1, with the FE estimator having better power properties. But the differences
between the power of FE and TMG estimators shrink rapidly and become negligible as T is
increased from 7' = 2 to T = 5['¥ The right panel of the figure provides the same results but
under correlated heterogeneity with p; = 0.5. In this case, the empirical power functions of
the FE estimator now shift dramatically to the right, away from the true value, an outcome
that becomes more concentrated as T is increased. In contrast, the empirical power functions
for the TMG estimator tend to be reasonably robust to the choice of pg.

To summarize, in the case of uncorrelated heterogeneity, the FE estimator performs well
despite of the heterogeneity and is more efficient than the TMG estimator in the case of base-
line model used in our MCs, but in general the relative efficiency of TMG and FE estimators
depends on the underlying DGP. The situation is markedly different when heterogeneity is
correlated, and the FE estimator can be badly biased, leading to incorrect inference, whilst
the TMG estimator provides valid inference with size around the nominal five per cent level

and reasonable power, irrespective of whether S, is correlated with x;; or not.

8.2.2 Comparison of TMG, GP, and SU estimators

Focusing on the case of correlated heterogeneity, we now compare the performance of the
TMG estimator with GP and SU estimators. To implement the GP estimator, defined by
, for T = 2 we follow GP and set h, = Cgpn=?¢?  with agp = 1/3, and Cgp =
%min (6p,7p/1.34), where 6p and 7p are the respective sample standard deviation and
interquartile range of det(W). See page 2138 in \Graham and Powell (2012)@ There is no
clear guidance in GP as to the choice of h,, when T" = 3@ For consistency, for GP estimates
we continue to use their bandwidth, h,, = Copn~®¢" with agp = 1/3, but set Cqp = (d,)"/?
and trim if d; = det(W{W,) < h2. The sensitivity of the results to the other choices of agp
is considered below. For SU we use the code made available to us by the authors, which is
applicable only when 7' = 2.

The bias, RMSE and size for all three estimators are summarized in Table [2| for T = 2,

18But see the left panel of Table and Figure in the online supplement where it is shown that it does
not necessarily follow that the FE estimator will dominate the TMG estimator in terms of efficiency even
when 7 is ultra short.

YHowever, GP seem to be using the larger scaling value of Cgp = min (6 p,7p/1.34), when they generate
the histograms in Figure 1, on page 2137.

20For T = 3, GP do not use the bandwidth parameter, h,,, but directly select the “percent trimmed”, m,,.
In their empirical application for T' = 3 they report estimates with 4 per cent being trimmed. See the last
column of Table 3 on page 2136 of GP.
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and n = 1,000, 2,000, 5,000, 10,000. For T" = 3 the results are provided for TMG and GP

estimators only. The associated empirical power functions are provided in Figure [2]

Table 2: Bias, RMSE and size of TMG, GP and SU estimators of 8, (E(5;) = 8, = 1) in

the baseline model without time effects and with correlated heterogeneity, pz = 0.5

T=2 T=3
T Size T Size

Estimator (x100)  Bias RMSE (x100) (x100)  Bias RMSE (x100)

7= 1,000
™G 312 0.048 0.35 4.9 16.5 0.023 0.20 5.2
GP 4.2 -0.029 0.83 4.5 2.0 -0.002 0.27 4.6
SU 4.2 -0.045 1.62 4.9

n = 2,000
TMG 28.5 0.044 0.27 5.3 14.1  0.018 0.16 5.4
GP 3.4 0.031 0.70 5.8 1.3 0.003 0.22 4.4
SU 3.4 0.008 1.39 5.5

n = 15,000
T™G 247 0.037  0.18 4.7 10.8 0.016 0.11 5.3
GP 2.5 0.009 0.52 5.2 0.7 -0.001  0.15 5.2
SU 2.5 0.003 1.01 4.9

n = 10,000
TMG 21 0020 014 56 88 0013 008 53
GP 20 0002 041 43 0.5 -0.002 011 4.9
SU 2.0 0.007 0.82 5.2

Notes: (i) GP and SU estimators are proposed by |Graham and Powell| (2012) and [Sasaki and Ura) (2021]),
respectively. The GP estimator is given by 1) For T'= 2, GP compare d; /% Wwith the bandwidth hy, =

Copn= 6P, agp is set to 1/3. Cgp = %min (6p,7p/1.34), where 6 p and 7p are the respective sample

standard deviation and interquartile range of det(W ). For T = 3, we continue using the bandwidth h,, with
Cap = (dn)*?. See Section for details. When 7" = 2, the SU estimator uses the same bandwidth as
GP. (ii) For details of the baseline model without time effects, see footnote (i) to Table [I| For the TMG
estimator and its trimming threshold, see footnotes (ii) and (iii) to Table |1} 7 is the simulated fraction of
individual estimates being trimmed, defined by . The estimation algorithm for the SU estimator is not
available for T' = 3, denoted by “...”.

The fraction of the trimmed estimates, m,, defined by , for the TMG estimator is
quite high when 7" = 2, but declines markedly when 7 is raised to 3, and to a lesser extent as
n is increased. This is not the case for the other two estimators. For example, when 1" = 2
and n = 1,000, the fraction of trimmed estimates for the TMG estimator is around 31.2 per
cent as compared to 4.2 per cent for GP and SU estimators, and falls to 22.1 per cent as n
is increased to 10,000. Increasing 7" from 2 to 3 with n = 1,000 reduces this fraction to 16.5
per cent as compared to 2 per cent for the GP estimatorﬂ The heavy trimming causes the
TMG estimator to have a much larger bias than GP and SU estimators, particularly when

T = 2 and n is sufficiently large. However, the TMG estimator continues to have better

21Recall that the codes released by SU do not allow us to compute their estimator when T = 3.
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Figure 2: Empirical power functions for TMG, GP and SU estimators of 3, (E(3;) = B, = 1)
in the baseline model without time effects and with correlated heterogeneity, pz = 0.5, for
n = 1,000, 2,000, 5,000, 10,000 and 7" = 2, 3
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overall small sample performance due to its higher efficiency. Recall that the TMG estimator
makes use of the trimmed estimates, as set out in the second term of , but the trimmed
estimates are not used in the GP estimator. This difference in the way trimmed estimates
are treated is reflected in the lower RMSE of the TMG estimator as compared to the other
two estimators for all 7" and n combinations. For example, when T = 2 and n = 1,000, the
RMSE of the TMG is 0.35 as compared to 0.83 and 1.62 for GP and SU estimators. The
relative advantage of the TMG estimator continues when 7' is increased from 2 to 3, but its
relative advantage declines. For T = 3, the RMSE of the TMG estimator stands at 0.20
compared to 0.27 for the GP estimator. The larger the value of T', the less important the
trimming becomes.

The empirical power functions for all three estimators are shown in Figure 2] As can be
seen, the TMG estimator is uniformly more powerful than the GP estimator and the GP

estimator is more powerful than the SU estimator.

8.2.3 Models with time effects

Adding time effects to the panel regressions does not alter the above conclusions. The MC
results for estimation of 3, and the time effects ¢ = (¢, ¢,)’ are summarized in Tables
and (] respectively. The small sample properties of the TMG-TE estimator of 3, are very
close to those reported for the TMG estimator in Table [2 Interestingly, there are also little
differences between TMG-TE and TMG-C estimators of 3, when 7" = 3, as can be seen from
the right panel of Table [3 Also, the time effects are precisely estimated. Bias, RMSE and
size for TMG-TE and GP estimators of ¢ = (¢, ¢,)’ are summarized in Table[d The bias of
TMG-TE and GP estimators of ¢, are similar, but the TMG-TE estimator has much lower
RMSEs and higher power when T" = 2. A comparison of the empirical powers of these two
estimators is given in Figures in the online supplement.

8.2.4 Sensitivity of TMG and GP estimators to the choice of the threshold

values

Finally, we consider the sensitivity of TMG and GP estimators to the choice of threshold
values. The baseline value of the threshold value for the GP estimator, agp = 1/3 as
recommended by GPF_ZI But for the purpose of comparison with the TMG estimator computed
for « = 1/3,0.35 and 1/2, we also consider agp = 0.35/2 and 1/4. Recall that the bandwidth,
h?, used by GP corresponds to a, used in the specification of TMG. Hence, 2agp corresponds

to a. For comparability, we decided to consider values of agp below 1/3 required by GP’s

22Gee equation 1) and the related discussion for the implementation of the GP estimator in sub-section

B23
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Table 3: Bias, RMSE and size of TMG-TE, TMG-C, GP and SU estimators of g, (E(5;) =
By = 1) in the baseline model with time effects and correlated heterogeneity, ps = 0.5

T=2 T=3
7 Size T Size

Estimator (x100) Bias RMSE (x100) (x100) Bias RMSE (x100)

n =1,000
TMG-TE 31.2  0.048 0.35 5.0 16.5 0.023  0.20 54
TMG-C 16.5 0.023  0.20 5.2
GP 4.2 -0.034 084 3.9 2.0 -0.002 0.27 4.6
SU 42 -0.052 1.67 5.3

n = 2,000
TMG-TE 28,5 0.044 0.27 5.6 14.1  0.018 0.16 5.5
TMG-C 14.1  0.018 0.16 5.6
GP 34 0.032 0.71 5.2 1.3 0.003 0.22 4.6
SU 3.4 0012 1.40 5.8

n = 95,000
TMG-TE 24.7 0.037 0.18 4.7 10.8 0.016 0.11 5.3
TMG-C 10.8 0.016 0.11 5.3
GP 25 0.008 0.53 5.0 0.7 -0.001 0.15 5.1
SU 2.5 0.006 1.02 4.7

n = 10,000
TMG-TE 221 0.028 0.14 5.7 88 0.013 0.08 5.3
TMG-C 8.8 0.013 0.08 5.3
GP 20 0.003 041 4.4 0.5 -0.002 0.11 5.0
SU 2.0 0.011 0.82 5.5

Notes: (i) The baseline model is generated as y;; = a; + ¢, + B;Tit + uir, with time effects given by ¢, = ¢ for
t=1,2,...T—1,and ¢ = =T(T — 1)/2. The errors processes for y;; and x;; equations are chi-squared and
Gaussian, respectively, ;; are generated as heterogeneous AR(1) processes, and Ps (the degree of correlated
heterogeneity) is defined by (8.6)). For further details see Section (ii) The TMG-TE estimators of g
and ¢ are given by and , respectively, and their asymptotic variances are estimated by
and , respectively, in the Appendix. The TMG-C estimators of 8y and ¢ are given by and
(6.17)), respectively, and their asymptotic variances are estimated by and , respectively. For the
trimming threshold, see footnote (iii) to Table[1] (iii) For GP and SU estimators, see footnote (i) to Table
7 is the simulated fraction of individual estimates being trimmed, defined by . “...” denotes the
estimation algorithms are not available or not applicable.

Table 4: Bias, RMSE and size of TMG-TE and GP estimators of the time effects, ¢, and ¢,
in the baseline model with correlated heterogeneity, ps = 0.5

n = 1,000 n = 5,000
Estimator Bias RMSE Size (x100) Bias RMSE Size (x100)
T=2 T=2
=1 TMG-TE 0.002 0.09 6.1 -0.001 0.04 4.8
GP 0.001 0.54 7.1 -0.008 0.35 6.9
T=3 T=3
o =1 TMG-TE -0.002 0.10 5.6 0.001 0.05 4.9
GP 0.004 0.15 5.7 0.001 0.07 5.0
¢y =2 TMG-TE -0.006 0.10 5.7 0.000 0.05 4.9
GP -0.010 0.13 5.3 0.000 0.06 4.2

Notes: For the baseline model with time effects, see footnote (i) to Table 3] For the TMG-TE estimator, see
footnote (ii) to Table 3] For the GP estimator, see footnote (i) to Table
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theory. This allows us to compare GP and TMG focusing on the utility of including both
trimmed and untrimmed estimates of 8; in estimation of average treatment effects.

The results are summarized in Section of the online supplement. As can be seen
from Table[S.5|there is a clear trade-off between bias and variance as « and agp are increased.
For T = 2, the TMG estimator is biased when ov = 1/3 (as predicted by the theory), but has
a lower variance with its RMSE declining as « is increased from 1/3 to 1/2. This trade-off is
less consequential when 7' is increased to T" = 3. The same is also true for the GP estimator.
But for all choices of o and agp the TMG performs better in terms of RMSE when T = 2. For
T = 3, TMG and GP estimators share the same trimming threshold when o« = 2ap, resulting
in identical trimmed fractions for a = 2agp € {0.35,1/2}. While RMSEs are similar, the
GP estimator exhibits significantly higher bias than the TMG estimator as observations of
the trimmed units are not exploited by the GP estimator.

Figure compares power functions of TMG and GP estimators with o = 2agp = 0.35.
For T = 2, a higher trimmed fraction results in a steeper power function for the TMG
estimator as compared to that of the GP estimator. When 7' = 3, with the same trimmed
fraction, the power function of the GP estimator shifts to the right, away from the true value.
The substantial differences in power performance of the TMG estimator with o = 1/3 and
the GP estimator with agp = 1/3 are also illustrated in Figure [S.3]

The power comparisons of TMG and GP estimators for different values of o and agp are
given in Figures and [S.5] respectively, and convey the same message, suggesting that for
the TMG estimator the boundary choice of & = 1/3 tends to produce the best bias-variance
trade-off. Increasing o reduces the bias but increases the variance, and the boundary value

derived theoretically seems to strike a sensible balance and is recommended.

8.2.5 MC evidence on the Hausman-type test of correlated heterogeneity

Table 5| reports empirical size and power of the Hausman-type test of correlated heterogeneity
given by . The left, middle and right panels report the results under homogeneity,
uncorrelated heterogeneity and correlated heterogeneity in slope coefficients. In the left and
middle panels, the size of the test is around the nominal level of 5 per cent. As shown in
the paper, when x;; is strictly exogenous and (3, is mean independent of X;, FE, MG and
TMG estimators are all consistent under homogeneity and uncorrelated heterogeneity, and
in this case the Hausman-type test does not have power against uncorrelated heterogeneity.
However, in the case where slope coefficients are heterogeneous and correlated with the
regressors, the MG and TMG estimators are consistent when they have at least finite second
moments, while the FE estimator is biased for all 7. In this case, we would expect the

proposed test to have power, and this is indeed evident in the right panel of Table [l Also
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the power of the test rises with increases in n even when 7" = 2, illustrating the (ultra) small
T consistency of the proposed test.

The MC evidence on the performance of our proposed test of correlated heterogeneity
in the case of panels with time effects is given in Table of the online supplement. We
consider two versions of the test, depending on how time effects are filtered out, namely
TMG-TE and TMG-C estimators (see equations and (S.2.21)) ] The empirical size
and power of these two test statistics are comparable for T' > 2. More importantly, allowing
for time effects has negligible effects on the small sample performance of the test, while the
power of the test is slightly lower than the power reported in Table [5| for models without time
effects. Increases in n and/or T result in a rapid rise in power, illustrating the consistent

property of the proposed test.

9 Empirical illustration

In this section, we re-visit the empirical application in |Graham and Powell (2012)) who pro-
vide estimates of the average effect of household expenditures on calorie demand, based on a
sample of households from poor rural communities in Nicaragua that participated in a con-
ditional cash transfer program Red de Proteccion Social (RPS). The data set is a balanced
panel with n = 1,358 households observed from 2000 to 2002. We present estimates of the

average treatment effects using the following panel data model with time effects:
In(Caly) = a; + ¢, + B; In(Expy) + i, (9.1)

where In(Cal;;) denotes the logarithm of household calorie availability per capita in year
t of household i, and In(Exp;) denotes the logarithm of real household expenditures per
capita (in thousands of 2001 cordobas) of household i in year t. The parameter of interest
is the average treatment effect defined by 5, = E(5,), allowing for possible dependence
between [, and In(Exp;;). Correlated heterogeneity could arise for a number of reasons, such
as model misspecification, individuals responding strategically to treatments, and common
factors that simultaneously affect 5, and the treatment, In(Exp;). It is, therefore, prudent
to first test for correlated heterogeneity before estimating (3, by fixed effects, which is the
standard approach when 7" is ultra short. We provide test statistics and estimates of 3, for
the panels of 2001-2002 (7" = 2) and 2000-2002 (7" = 3) with and without time effects.
Table [0] reports results of the Hausman-type test of correlated heterogeneity in the effects

of household expenditures on calorie demand. The null hypothesis is rejected for both panels

23For further details, see Section in the online supplement.
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covering the periods 2001-2002 and 2000-2002, and irrespective of whether time effects are
allowed. As shown in the Monte Carlo experiments, the test only has power against the
alternative of correlated heterogeneity. Therefore, these results provide strong evidence of
heterogeneity in the treatment effects that are correlated with the level of household ex-
penditures, which in turn sheds doubt on the validity of the FE estimation of the average

treatment effect for this application.

Table 6: Hausman-type statistics for testing correlated heterogeneity in the effects of house-
hold expenditures on calorie demand in Nicaragua

Without time effects With time effects
2001-2002 20002002 2001-2002 20002002
TMG-TE TMG-TE TMG-C
Statistics 5.918 7.626 5.959 6.772 7.653
p-value 0.015 0.006 0.015 0.009 0.006
T 2 3 2 3 3

Notes: The test is applied to the average effect 8, = E(8;) in the model based on the RPS panel of
1,358 households. The test statistic for panels without time effects is described in footnote (iii) to Table
The test statistics for panels with time effects are based on the difference between the FE-TE and TMG-TE
estimators given by with T' > 2, and the difference between the FE-TE and TMG-C estimators given
by with T > 2. For further details see Section in the online supplement.

Table 7: Alternative estimates of the average effect of household expenditures on calorie
demand in Nicaragua over the period 2001-2002 (7" = 2)

Without time effects With time effects
(1) (2) (3) (4) (5) (6) (7) (8)
FE GP SU TMG FE-TE GP SU TMG-TE
Bo 0.6568 0.4549 0.6974 0.5623 0.6554 0.4629 0.6952 0.5612
(0.0287) (0.1003) (0.1689) (0.0425) (0.0284) (0.1025) (0.1650) (0.0424)
Booon 0.0172  -0.0181 0.0178
. (0.0063) (0.0296) (0.0064)
T (XIOO) 3.8 3.8 27.1 3.8 3.8 27.1

Notes: The estimates of 5, = E(f;) and ¢qpp, in the model are based on the RPS panel of 1,358
households. The FE estimator is described in the footnote (ii) to Table GP and SU estimators are
described in footnote (i) to Table [2l The TMG estimator is described in footnotes (ii) and (iii) to Table
The FE-TE estimator is the two-way fixed effects estimator given by in the online supplement.
TMG-TE and TMG-C estimators are described in footnote (ii) to Table [3| 7 is the estimated fraction of
individual estimates being trimmed, defined by . The numbers in brackets are standard errors. *...”
denotes the estimation algorithms are not available or not applicable.

Table|7| presents the estimates of 3, based on the panel of 2001-2002 (with 7" = 2) without

time effects (left panel), and with time effects (right panel). The estimates are not affected
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by the inclusion of time effects but differ considerably across different methods@ Based on
the test results reported in Table [0, the FE estimates are most likely biased. Turning to the
trimmed estimators, we find that only the TMG estimator is heavily trimmed with 27.1 per
cent of the estimates being trimmed, whilst the rate of trimming is only around 3.8 per cent
for GP and SU estimatorsP’] Focussing on the estimates without time effects, we find the
FE estimate, 0.6568 (0.0287), is much larger and more precisely estimated than either the
GP or TMG estimates, given by 0.4549 (0.1003) and 0.5623 (0.0425), respectively[?| Judging
by the standard errors, it is also noticeable that the TMG is more precisely estimated than
the GP estimate and lies somewhere between the FE and GP estimates. In contrast, the
SU estimate of 0.6974 (0.1689) is close to the FE estimate but with a much larger degree of
uncertainty. These estimates are in line with the MC results reported in the previous section,
where we found that in the presence of correlated heterogeneity FE estimates are biased with
smaller standard errors (thus leading to incorrect inference), whilst GP and TMG estimators

are correctly centered with the TMG estimator being more efficient.

Table 8: Alternative estimates of the average effect of household expenditures on calorie
demand in Nicaragua over the period 2000-2002 (7" = 3)

Without time effects With time effects

(1) (2) (3) (4) (5) (6) (7)
FE GP TMG FE-TE GP TMG-TE TMG-C
Bo 0.6588 0.6034 0.5900 0.6968 0.6448 0.6370 0.6338
(0.0233) (0.0350) (0.0284) (0.0211) (0.0330) (0.0263) (0.0261)
&52001 0.0727 0.0682 0.0708 0.0682
(0.0087) (0.0123) (0.0088) (0.0123)
&2002 0.1066 0.0954 0.1054 0.0682
(0.0080) (0.0108) (0.0080) (0.0123)

7 (x100) 1.2 10.9 1.2 10.9 10.9

Notes: The estimates of 5, = E(8;) and (Pa901, Pa0o2)’ in the model (9.1) are based on the RPS panel of
1,358 households. 7 is the estimated fraction of individual estimates being trimmed, defined by (4.7)). See
also footnotes to Table

Table |8| gives the estimates of 3, for the extended panel, 2000-2002 (with 7' = 3), both
with and without time effects. When time effects are included we provide two versions of
the TMG estimates (TMG-TE and TMG-C), depending on how time effects are estimated.

2When T = 2, &2002 is not significant, and adding time effects does not change the estimated average
effect.

25For the 20012002 panel, # of the GP estimator is identical to the one reported in Table 3 of |Graham
and Powell (2012). |Graham and Powell (2012)) estimated a model with time-varying coefficients, y;; =
;i + ¢ + (B; + &1 p) Tit + uir, where (¢, @) are identified by stayers but estimated by near stayers. While
@5 is not included in m, the GP estimates we compute are close to the trimmed estimates in Table 3 of
Graham and Powell (2012)).

“%The bracketed figures are standard errors.
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As in the case of the 2001-2002 panel, the FE estimates are larger than the GP and TMG
estimates, but these differences are reduced somewhat, particularly when time effects are
included in the panel regressions. Further, as expected, increasing T reduces the rate of
trimming and brings the GP and TMG estimators closer to one another. The trimming rate
for the GP estimator is very small indeed (only 1.2 per cent), as compared to around 11 per
cent for the TMG estimator in the case of the 2000-2002 panel. The TMG-TE and TMG-C
estimates of the time effects (¢, and ¢og9) are quite close and are both highly statistically

significant and positive, capturing the upward trend in the calorie intake.

10 Conclusions

This paper studies estimation of average treatment effects in panel data models with possibly
correlated heterogeneous coefficients, when the number of cross-sectional units is large, but
the number of time periods can be as small as the number of regressors. We recall that
the FE estimator is inconsistent under correlated heterogeneity, and the MG estimator can
have unbounded first or second moments when applied to ultra short panels. Thus, the
TMG estimator is proposed, where the trimming process is derived by a careful examination
of the bias/efficiency trade-off in the asymptotic distribution. Conditions under which the
TMG estimator is consistent and asymptotically normally distributed are provided. We also
propose new estimators for ultra short panel data models with time effects, distinguishing
between cases where 7" > k and T > k, and derive their asymptotic distributions under
the identifying condition that the dependence between heterogeneous slope coefficients and
the regressors is time-invariant. Moreover, based on differences between the TMG and FE
estimators (without and with time effects), we propose Hausman-type tests of correlated
slope heterogeneity which must be applied before using FE or FE-TE estimators in practice.

Using Monte Carlo experiments, we highlight the bias and size distortion properties of
the FE and FE-TE estimators under correlated heterogeneity. In contrast, the TMG and
TMG-TE estimators are shown to have desirable finite sample performance under a num-
ber of different MC designs, allowing for Gaussian and non-Gaussian heteroskedastic error
processes, dynamic heterogeneity and interactive time effects in the covariates, and different
choices of the trimming threshold parameter, a. In particular, since the TMG and TMG-
TE estimators exploit information on untrimmed and trimmed estimates alike, they have
the smallest RMSE, and tests based on them have the correct size and are more powerful
compared with the other trimmed estimators currently proposed in the literature.

The Hausman-type tests based on TMG and TMG-TE estimators are also shown to

have very good small sample properties, with their size controlled and their power rising
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strongly with n even when 7" = k = 2. It is hoped that the new Hausman test provides
empirical investigators with a diagnostic test that can be used before the application of the
FE-TE estimators that are commonly used in the empirical literature. It is hoped that
the use of this diagnostic test can help researchers in avoiding biased estimates and possibly
misleading inferences. When the TMG and TMG-TE estimators and the Hausman-type tests
of correlated heterogeneity are applied to a panel of households in poor rural communities
in Nicaragua, the results provide clear evidence of correlated heterogeneity in the average
effect of household expenditures on calorie demand, which sheds doubt on the application of
FE-TE estimators to this data set.

Finally, we would like to end by acknowledging that, similarly to the FE-TE estimators,
the validity of the TMG-TE and TMG-C estimators requires the so-called parallel trends
assumption where time effects are assumed to have homogeneous effects across all individual
units in the panel. Relaxing the parallel trends assumption in short 7" panels has been an
important area of active research, but most of these contributions either assume homogeneous
slopes or restricted forms of slope heterogeneity, or place restrictions on the time effects. The
development of techniques for estimation and inference in ultra short panels with correlated

heterogeneous slopes and interactive effects is a topic for future research.
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Appendix

Notations: Generic positive finite constants are denoted by C' when large, and ¢ when
small. They can take different values at different instances. Apax (A) and Ay, (A) denote
the maximum and minimum eigenvalues of matrix A. A > 0 and A > 0 denote that A
is a positive definite and a non-negative definite matrix, respectively. [|A| = A2 (A’A)

and ||Al|; denote the spectral and column norms of matrix A, respectively. A* denotes the
adjoint of A, such that A™' = d~'A* and d = det(A). ||, = [E (|||P)]). 1t {fu}or, is
any real sequence and {g,} -, is a sequences of positive real numbers, then f, = O(g,), if
there exists C' such that |f,| /g, < C for all n. f, = o(g,) if f./gn — 0 as n — oco. Similarly,
fn = 0,(gn) if fn/gn is stochastically bounded, and f,, = 0,(¢gn), if fn/gn —p 0. The operator

—, denotes convergence in probability, and —,; denotes convergence in distribution.

A.1 Lemmas

Lemma A.1 Suppose that Assumptions [, [J] and |6 hold. Then for each i, we have

Edi1{d; < a,}] = O(as™), for s =1,2, ..., (A.1.1)

E(6;) = O(ay), and E(6?) = O(a,), (A.1.2)

E(6m;) = O(ay), and E (6;n;) = O(a,), (A.1.3)

SB[ < a,)] V7 = O(a?), (A14)
n! Z {E[d21{d; > a,}]}"* = O(a;). (A.1.5)

Proof. By mean value theorem (MVT), under Assumption [, we have
Fy(an) = F4(0) + fa(an)an = fa(an)a, = O(ay), (A.1.6)

where @, lies on the line segment between 0 and a,. Similarly, let ¢ (a,) = [ u* fo(u)du
and note that v'(a,) = a? fi(a,). Then by MVT (a,,) = ¥(0) + [@ f4(a,)] an, and we have

Bld1{d; < a,}] = / " ) = @ fa(@n)an = O(at), for s = 1,2, .. (A.LT)
0
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Using the above results

E(6;) =E Kdi — C‘") 1{d; < an}] = o 'E[d1{d; < a,}] — E[1{d; < a,}]

n

=a,'0(a?) — Fy(a,) = O(ay), (A.1.8)

and

E(6H)=E

(di _&")21{@ <a

Qn

= a,’E [d?1{d; < a,}| + E[1{d; < a,}] — 2a,,'E [d;1{d; < a,}]
=a,20(a) + Fyla,) — 2a,'0(a?) = O(ay,). (A.1.9)

Consider now the terms involving the products of §; and n,

di—a

n

B @) =B | () 14a, < w) o) - Bla(@]] (A.1.10)

Since B; is bounded and does not depend on d;, without loss of generality we set B; = I,
and consider the the j** term of (A.1.10]), namely

sifan) =5 { (42 ) 14 < a0} o) - Bl (@]

[N atwe— [ ) s

- £l |+ [ mxm4+E% [ ).

By Assumption [6| E [g;(d;)] < C, and using and (A.1.1) we have

/an fa(w)du = O(a,), and a;* /an ufg(u)du = O(ay,).
0 0

Also by the mean value theorem

/ai) g;(u)fa(u)du = g;(an) fa(@n)an = O(an),
ol ug;(w) falw)du = ai [@,9; (@) fa(@n)an] = O(ay).

ap u=0 n
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Hence, E (6;7;) = O(ay,). Similarly the j' term of E (8;n;) (setting B; = I},) is given by

n

spa(a) = fﬂ{(@;“”) 1&uScm}wxm>—£w%«mn}

- p{(% 12" )10 < adlgla) - Elg@] ). (AL

a? a,

Consider the first term

E{%u¢s%g@u»—E@um§
_ L " u?g;(u) fa(u)du — aiQE l9;(d)] E [di1{d; < an}],

2
an Jo n

and again by mean value theorem a,,? [ u?g;(u) fa(u)du = O(ay), E [g9;(d;)] < C, and using

(A1.7) E[d?1{d; < a,}] = O(ad). Hence, the first term of (A.1.11)) is O(a,). For its second

term, we have

Euwsm&@@%&%M@m=A%mmmmm—Emwml%mww=omm

and the order of the third term is already established to be O(a,). Hence, it follows that

E (6;m;) = O(a,). Finally, result follows from and follows noting that

d;?1{d; > a,} <a;% m

Lemma A.2 Suppose that Assumptions (1} [ [4, [3 and |6, hold. Let

gE,nT = nil Z (1 + 61) £iT7

i=1

where §; = (d an> 1{d; < an}, ap = Con™, C, < C, d; = det(W'W,), and &, =
(WQWI-)_I W;ui = Riui. Then

E(&.,7) =0, (A.1.12)
Var (&5,.7) = _2ZE [1{d; > a,} R.H;R;] ZWE [d?1{d; < a,} R,H,R;]
(A.1.13)
Var (&,,r) = O (n11), (A.1.14)
and
nt zn: a,'d?1{d; < a,} R H;(W)R;| = O (a}/?) . (A.1.15)

=1
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Proof. Under Assumptions |l| and conditional on W (and hence on d;), (1 + 6;) &, are
distributed independently over i and

n

E (&, W) = n') (1+6) RiE (u;|W;) =0,

=1
Var e [Wi) = 0723 (140" B (€l W)
=1
= 023 (14 6)* RiE (wi, [Wi) Ry =n 2 (1+6,)° RUHR,,
=1 i=1

where H; = E (u;ul|W;). We have suppressed the dependence of H; on W to simplify
the exposition. Hence, £ (EMT) =0, and Var (EMT) =F [Var (EMT \Wl)] To establish
(A.1.13)) note that

(14 6;)* = 1{d; > an} + a;,2d*1{d; < a,}, (A.1.16)
and
Var (&, ) =n"?>_ E[{d; > a,}RIH; R + n°E | _a,’d;1{d; < a,} RH;R; | .
i=1 1=1

Since H; is positive definite and by Assumption (1| sup; Ape. (H;) < C,
| R H Ry|| < Ao (H) | RIR:|| = Ao (H) [[(WIW3) 7| < Cd7H [(WIW)*|| (A117)

and
[Var (&,r)|| < Cn> E[1{d; > a,}d;" |(WiW,)*|]
=1

+On 2 | 3 a2 di1{d; < a,) ||<W;Wi>*||] -

=1

By Cauchy-Schwarz inequality

B [1{d; > a,}d: [(Wiw)|] < {B [d%14d; > 0} Y {B [ (W)

)"
i

E[d1{d; < ap}Amae (H:) |(WiW)*[|] < {E [d71{d; < a,}] }1/2 {E |:H(W;Wz)*
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and since by Assumption 4| sup, F¥ [H (WW )"

2] < (C, then

HV&T (E&HT )” <C

n—2Z{E [d21{d; > a,}]}"* +a;? —22{12 [d214{d; < a}]}"?] .

Now using results (A.1.4) and(A.1.5) of Lemma we have

n Y {E [d71{d; > a,)] Y2 = o ey,

and n~2 Z {E [d;1{d; < a,}] }1/2 = O(nta3?),
=1

then ||Var (E(S,nT)H = O(n'a;') + O(n~ anl/Q), and since a, = C,n~“ result (A.1.14
follows. To establish 1} using (A.1.17)) we have

<COn 'Y ay'did{d; < an} [|[(WW)*|,  (A.1.18)

i=1

=1

and by Cauchy-Schwarz inequality,

n Y a,'d?1{d; < a,} R H;R;

=1

Cn! Za;1 (B [d21{d; < a,}]}"” [E [(WiW,)"

2:| 1/2

Under Assumption , sup, E ||[(WiW;)" H2 < C, and we have
i=1

Now using (A.1.1) F[a,?d?1{d; < a,}] = a,,?0O(a}) = O (a,) , and result (A.1.15) follows. =

Lemma A.3 Let

E <C

n ST E [0;2d21{d; < a,)] }1/2] .

=1

Vit — Vo = Uit — Ujo + (mit - a_jio)/niﬂa fO’I" 1= 1727 ,’I’L,t = 1727 "'7T7

n

_ _ _ _1 N
Vot — Voo = N E Ult Uzo uot uoo) +n E (wit - wio) 7’257

i=1
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where ;5 = B; — By, and suppose that Assumptions and [§ hold. Then
E (v —05) =0, fori=1,2,..,n;t=1,2,...,T, (A.1.19)

ot — Voo = Op(n~Y?), fort=1,2,..,T, (A.1.20)

and (noting that T is fived as n — o0)
V1 (01 — VooTr) —q N(0,9,), (A.1.21)

—_ _ — — — /_ —1 n _ /
where Op = (Uo1, Vo2, .., Vor) =N D 0y Vio, Vio = (Vi1, Vig, ..., Vir)',

Q, =My |lim n 'Y E(vior,)| Mr, (A.1.22)

n—00
=1
and My = Ir — T_l’TT’T/T.

Proof. Under Assumptions (1| and , E(uy) =0 and E (x,n,5) = E (x},n,5) for all ¢ and s.

Hence
T
E (ui — wio) = 0, and E [(@y — ;o) mi5] = E (xhymy5) — T Z E (x}ym) =0,
=1

then result (A.1.19)) follows. Result (A.1.20]) also follows noting that under Assumptions

and @, {vit — Vo, for i = 1,2, ...,n}, are cross-sectionally independent with mean zero and
finite variances. To establish [A.1.21| we first note that v,, = T~ (7/-0r), and hence

\/ﬁ(’l_)T — ’DOOTT) = MT\/ﬁ’l_JT = n_1/2 Z MTVio,
i=1

where My, is a T' x 1 vector (T is fixed) with zero means and finite variances, and by
Assumption [6] are cross-sectionally independent. Therefore, result follows by standard

central limit theorems for independent but not identically distributed random variables. m

A.2 Proof of Propositions and Theorems

A.2.1 Proof of Proposition

Proof. Under Assumption , 0rrc —, 0 if €, —, 0. A sufficient (but not necessary)
condition for the latter to hold can be obtained by applying Markov inequality to &, , i.e.,
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for any fixed € > 0, Pr (HEHT” > e) < EHEE+TH Thus for £, —, 0, it is sufficient to show
that £ HEnTH2 — 0. In what follows we find conditions under which F ||EnTH2 = 0O(n™1),

and hence establish that €, —, 0 at the regular rate of n=%/2. Note that

[&url® = n~2

2 — 2 (z: 51T> (Z 51T> =n? Z Z&TEJT-

=1 j5=1

> &
=1

Hence E HEnTHQ = n 20 Y E(&r€r). Since under Assumption |1 uj,s are cross-

sectionally independent and we have
— 2 _ n
b ||€nTH =n"? Z E(&r&ir) - (A.2.1)
i=1

Then using (2.7)),
E (&r&ir|W:) = E (uiRiRiu,|W,;) = E[Tr (Ruw;R) |W,] = Tr (R H;(W;)R;),
where by Assumption [I, H;(W;) = E(uw;u}|W;). Also

Tr (R;HZ(WZ)RJ S T)\max [Hl(Wl)] Tr (R;RZ)
= Thas [H{(WOI Tr [(WIW) ™| < T [HAW )] {FAae [(WW7) ]}
Since T and k are finite, and under Assumption [} sup; Ao, [Hi(W;)] < C,
Tr(RH(W)R,) < Chaa (WiW,)

Then given (A.2.1)) we have

E|E. | = ‘QZE Tr (RLH (W )R <Cn—2ZE{ mas | (WW) 7]}

=1
2 1y
Hence, F ||£nTH =0 (n1,if
sup E {Am [(W;W,-)—l] } < C < oo (A.2.2)
It is also worth noting that condition (A.2.2]) can be written in terms of column or row norms

of (WIW )~ which is easier to use in practice. Since W.W; is a symmetric matrix then
it follows that Apax [(WiW )7 < [[(WiW;)7Y|,, where ||A||, denotes the column norm of

AT



A. Also (WW)™! = d; Y (WIW,)*, where d; = det(W/W;), and (W,W,)* is the adjoint
of WiW . Then Apay [(WIW )71 < d;1 [(WiW,)*||,, and by Cauchy—Schwarz inequality

1/2
Y

(3

B Do [(WiW) ]} < [B (7)) { B [IWiW) (]}
hence equation will hold under the following conditions
sup E (d;?) < C, and sup E [H(W;Wl)*ﬂf] <C,fori=1,2,...n.
Under the above conditions 6¢ converges in probability to 6, at the regular rate of n=/2,

irrespective of whether 6, are correlated with the regressors or not, and it is robust to error

serial correlation and conditional heteroskedasticity. m

A.2.2 Proof of Proposition

Proof. Consider
U, A,9, =¥,0,0, — <n1 > \1@52@1:) :
i=1

and without loss of generality suppose that €23 is positive definite. Then

— 'Y (Pi—P,) (Pi—P,) .

i=1

U, AT, = — lnl > P,P,-P,P,

i=1

where P; = \Ilixﬂif and P, =n~! >, P;. Hence A, = —\Il;lij\il;l, where

It is clear that V¥ is semi-positive definite and by Assumption [3| ¥,, is positive definite.
Then it follows that ¥ IVS v " is also semi-positive definite and hence A, is non-positive
definite, A,, < 0. For B,, we have

¥,B,9, = ¥, [n1Zm;clngTHi(Xi>MTX»I!;£] v,

i=1
- [n_l > X;MTHZ-(XZ-)MTXZ»] ,
i=1
and in general it is not possible to sign ¥,, B, ¥,,. The outcome depends on the heterogeneity
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of error variances and their interactions with the heterogeneity of regressors. We have already
seen that B, = 0 when H;(X;) = o?Ip, but this result need not hold in a more general

setting where H;(X;) varies across i. m

A.2.3 Proof of Theorem 2
Proof. Using (2.5)), (4.2)) and (5.2), we have

where (i = (1 +6:)n; + (1 + 6:)€;p, and using (.5)

~ 1 _
eTMG - 00 = (1 —|—S ) CnT7 (A24)

where ,,p = n >0 M+ Y0 im0 Y0 (1 + 05)€p. Subtracting (A.2.4) from
(A.2.3) now yields

~ ~ 1 _
01—0 - . 510 - = nT>
MG = Cir + 0i60o (1+5n) Cor

and we have

n! y (éz - 9TMG> (éz - éTMG>/

i=1

e Z CipClip + (n_l Z 512) 6,0, + <n_1 Z 5iCiT> 6, + 6o (”_1 Z 5iC;T>
i=1 i=1 i=1 =1

1\’ N
146, 146,
By the results in Lemma , E(6,) = O(an), and E ({,p) = E(6:;m;) = O(ay,), 6, =
O(ay) + 0,(1) and n=t S°" 67 = O(a,) + 0,(1). Also using (5.11)) we have

+

= R Sn =/ (_Sn - ,
CnTCnT - (1 T 5n> OOCnT - (m) CnTOO‘ (A25)

Cur = O(n™) + 0, (n™757).

and since o > 1/3 using (5.10)),

1 2_2 1
1446, 1446,
)

EorCop = O (n72%) + 0, (n"07) = 0, (n"0=) | (A.2.6)
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Consider now
Comr=n""> 6:Cr=n"" 0;(L+8)m+n" Y 6 (1+6;) & (A.2.8)
i=1 i=1 i=1

By (A.1.3) in Lemma[A1] E[6; (14 6;)n,] = O(ax), and since §; (1 + §;) n; are distributed

independently over ¢ we have

n

n Y 6 (L+6:)m; = Oylan). (A.2.9)

=1

Since conditional on W, §; (1 + §;) &, are distributed over ¢ with zero means, then following
the same line of argument as in the proof of Lemma [A.2] we have E [§; (1 +§;) €;7] = 0 and

nt Y (14 6y) giT] = n?Y E[5(1+6) RH;R;

=1

< Cn Y E [0 (1467 d [(Wiwn) ]
i=1

Further using (A.1.16|)

di — Qp

(1+0,)%07 = [1{d; > a,} +a,’d?1{d; < a,}] (

di_ n 2
ay’d; (—a - ) 1{d; < an},

n

n

)21{@- < a,}

and

n

nt Y 6 (1+6:) &ir

i=1

< Cn~? Zn:E

i=1

Var

n

di_ n ?
i () 1{diSan}||<W;Wi>*H].
By Cauchy-Schwarz inequality

E

di_ n ?
o () 1{diSan}||<W;Wi>*||]

< a;2 {E

&2 (%)4 1{d; < an}] }1/2 [E |(W'W,)*

n

2:| 1/2
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2
< C, we have

d—a 4 1/2

and since under Assumption , sup; F/ H (WW )"

n Y 6 (1+6:) &ir

i=1

Also using (A.1.1)) of Lemma

d; —a, \*
g (_) 1{d; < a,}
a

n

Var

< COn?a;? i {E

i=1

E =a,*E [(d} — 3d}a, + 3a}d} — apd;) 1{d; < a,}] = O (a}),

n

which yields

n

nt Y 6 (1+6) eiT] =0 (n'a;%a)?) = 0 (n™"a;"?),

i=1

Var

and by Markov inequality

n! Z 0i(1+8;)&r =0 (n_l/Qa;I/‘l) =0 (n_1/2+°‘/4) . (A.2.10)
i=1

Using (A.2.9) and (A.2.10) in (A.2.8), we have Cs,p = O,(n=) + O (n=1/27%/4) | which if
used with (A.2.6) and (A.2.7) in (A.2.5) now yields (for o > 1/3)

1~z & -~ ., 1L ,
- ;(91' —0rmc)(0; — Ormc) = ; CirCir

(I+a)

+Op (n_(l_a)) + 0, (n_ 2 ) +0(n )+ 0 (n_1/2+a/4) ,

and since ¢, are independently distributed over 7, we have

plimn~! z": <él - éTM(;> (éz - éTMG>/ = nhjfolo [n_l Zn: E (CZTC;T)] :

n—o0 i=1 i=1
But using (A.2.4) and recalling that 6,, = O(a,,) then

lim nVar <@TMg> = lim nVar (ZNT) .

n—oo n—oo

All



Also (recall that E ((,7) = O(ay))

n

nVar (EnT) =L {n_l [Cir — E(Cir)] [Cir — F (Cz‘T)y} =n! Z E (CirCip) + O(al).

1

Hence

n

lim nVar <9TMg> = hm n- ZE (¢irCip) = plimn~ Z (éz — éTMg> <él — 9TM(;>/,

n—00
n—00
=1 =1

- . - . / N
and n~! 2?21 (01- — OTMg> <0i - HTMg> is a consistent estimator of nVar <0TM0>. [ |

A.3 Proof of Theorem (3| (Asymptotic distribution of
the TMG-TE estimator)

Proof. Initially, we consider the case where T' > k. To derive the asymptotic distribution

of Orara_rp we first note that Orya_15(P) = Orme — Q. ¢, and Orya_re = Orc — Q0.

Hence
(Brarc-rr — 60) — (Brvcre(¢) — 60) = -Q, (3= ¢). (A3.1)
Also stacking (6.7)) over ¢ and subtracting the results from (6.10]) yields

~

¢—p=—-—MW (éTMG—TE — 90) + Mo, (A.3.2)

where o =n~ ' 3" vy, and v; = (v, vig, -y vir) with vy = uy + zc;tnﬁi. Using this result
in (A.3.1)) we have

<Ik - Q;MTW) (éTMG—TE - 00) = (éTMG—TE<¢) - 00) - Q;MTD

For a known value of ¢, the asymptotic distribution of (9TMG,TE( ) — 0) is the same as

O with y, replaced by y, — ¢. Under the assumption that I — Q MW is invertible,

we have

) B N1 . _ N1
Orvc-TrE—00 = (Ik — Q;MTW) <9TMG—TE(¢) — 90) — (Ik — Q;MTW) Q. M.
Hence using Lemma , v =0, (n~'/?), and we have

n(1=e)/2 (OTMG TE — 90) = (Ik - Q;MTV_V) - [n(l /2 (HTMG rE(®) — 90)} +0,(n=/?%),
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where for a known ¢ we have already established in Theorem 1| that
(1=l (9TMG—TE(¢) - 90> —a N (0, Vo(e)),

with V(@) = lim,, .o, Var [n(l_a)/Q@TMG,TE(qS)] . Suppose further that plim,,_,__ (Q;MTW>

= G, where I, — G, is non-singular. For a > 1/3, we have nli=e)/?2 (éTMG—TE - 90) —d
N (0, Vorva-rE), where

Vormare = Iy — Gy) ' V() [(Iy — Gu) '] (A.3.3)

A consistent estimator of the asymptotic variance of 9T MG_TE 1S given by

— 1 -, N1 o~ -, _\-17
VCL?“(OTMG,TE) = m (Ik — QnMTW) Vg |:<Ik — QnMTW> :| s (A34)
where
~ 1 LI P -~ D
Vo= 5. )2 Z(GZ — Qi¢ — Oruc-15)(0; — Qi — Orunc-TE) (A.3.5)

(n—1)(140,)

=1

Consider now the asymptotic distribution of ¢. Using (A.3.2) and noting that
MTV_V <9TMG—TE - 00) = MTX (IBTMGfTE - /30), we have

~

¢ — g = —~MrX (BTMG—TE - 50) + M.

Two cases can arise depending on whether the probability limit of M7 X tends to zero as
n — oo, or not. Under (a) plim, ,.  M7X = 0, we have n'/2(¢ — ¢y) —q4 N(0, M1Q, M),
where £, is given by (A.1.22), namely ¢ —, ¢, at the regular rate of n~'/2. Also since

Vit — Vio = (Ui — Uio) + (@i — jio)/’mﬂ = Yit — Yio — (Tir — xi0)' B— ¢y,
(2, can be consistently estimated by

8, = 3" (5~ XBruc v~ ) (v~ XBrwo 1o —3) (A.3.6)

n—1

=1

Under case (b), plim,, ,. M7X # 0, and convergence of @ to ¢, cannot achieve the regular

A13



rate. To see this note that

nll=e)/2 <§;5 - Q—”o) =-M;X |:n(1—a)/2 (BTMG—TE - Bo)} +n 2 My ("1/2’7) )

where M (n1/217) = O,(1) and and since av > 0 the second term tends to zero, but rather
slowly. In practice, where it is not known whether M ;X — 0 or not, one can consistently

estimate the asymptotic variance of o by

o — —

Var ((2») =My [X'Var (BTMG_TE) X'+ nlﬁyl M, (A.3.7)

where Var (BTMGfTE> and Q, are given by (A.3.4) and (A.3.6), respectively. Note that

— —

Var (g?)) is singular as Var (é&) Tr = 0, but its diagonal elements can be used to test if qAbt
for t = 1,2, ..,T are individually or jointly statistically significant subject to ¢'T7 =0. m
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S.1 Introduction

This online supplement is structured as follows. Section derives the Hausman-type test
of correlated heterogeneity in panel data models with time effects, with corresponding Monte
Carlo (MC) evidence provided in Section Section provides details of the MC de-
sign. Sections and summarize MC results for the TMG estimator with Gaussian
and uniformly distributed errors in the regressor (x;) process, respectively. Section
provides MC evidence for the TMG and GP estimators using different o and agp, exponents
in the threshold values. Section investigates the robustness of the TMG estimator to a
number of variations on the baseline DGP. Section shows and discusses the MC results
when there is an interactive effect in the regressor process. Section presents the empirical

power functions for the baseline model with correlated heterogeneity and time effects.

S.2 The Hausman-type test of correlated heterogeneity

with time effects

Given the panel data model with time effects in (6.1]), a Hausman-type test can be constructed
based on the difference between the TMG and FE-TE estimators when 17" > k. The FE-TE

estimator is given by

. - |1 _ B
Bre-re = Yurs - (Xi—X) Mz (y;,—9)|, (S.2.1)
i=1
and
Grp—re=Mr(§— XBrp_rp), (S.2.2)
where
- 1 < _ _
T =~ Zl (X — X) Mr(X; - X).
Then,

s -1 |1 C
Bre—re — Bo = VY, 1 [E Z (Xz' - X) MTVi] 5 (5.2.3)
i=1
where v, = v, —v, v =n"! Z?:l v;, and v; = u;+ X ;1,5 We derive the test statistics under
the null hypothesis in ([7.1]), for two cases: (a) when 7" > k the TMG-TE estimator in (6.12]) is
used, and (b) the TMG-C estimator in (6.20)) is used when 7' > k. The implicit null is given
by n V23" F [(XZ — X)/ My (X, - X) nw} — 0, which is implied by 1' but not wvice

versa. We make the following assumption that corresponds to the pooling Assumption [3;
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Assumption S.1 (FE-TE pooling assumption) Let ‘i’n,TE = n 'Y U, rp, where
WV, rp = (XZ — X)/MT (XZ — X) For T > k, there exists ng such that for all n > ng,

W, rg is positive definite,

n

W15 nhg)lo nt ZE (O;rp) = ¥rp > 0, (S.2.4)
i=1
and
oy = Urp + 0,(1). (S.2.5)
S.2.1 T>k

When T > k. consider
AB,TE = IBFE—TE - 5TMG—TE>

where 3 rp_rp and BTMg,TE are given by |D and 1D respectively. Given 1}
(A.3.2) and ¢ = M1(§ — X Bryg_1p), we have

. , _ 1 i
— = (I — M X)) | ——— ' Moo, |, S.2.6
Bryvc—1e — Bo (I Q.. Mr ) n(l+9,) ;Qm " ( )

where §; is given by (4.3)), and partitioning Q, conformably with W; = (77, X;) we have

Q. = (1+06;)MrX,;(X;MrX,;)™ ", (S.2.7)
and .
— 1
Q. = W10, ; Q- (S.2.8)

Using (S.2.3]) and under Assumption
N - |1 _ _
Bre—te —Bo=YrE | = Z (X — X)/ Mo, | +o,(1), (S.2.9)

which in conjunction with (S.2.6)) yields

n
- e X o , _
Asre = Bpe_18 — Bryuc—re =N E Gz’,TEMTVi7

=1
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where G, g is a T' x k' matrix given by

. — _ _, -17!
Girp=(X:—X) ¥ — (1+3,)7'Q, {(Ik - QmMTX> } .

Under Assumption [1f and the null hypothesis given by (7.1), E(7;|GirE) = 0 for all i and
t. Also by Assumptions [I| and @, u;t and 1,5 are cross-sectionally independent so that v

conditional on X; are also cross-sectionally independent. Then as n — oo,

\/ﬁAﬁjTE —d N((), VA,TE)a

as long as

R -
VA,TE = nhj{)lo E ;E (GgyTEMTViV;MTGi,TE> = 0. (8.2.10)

Hence when T' > k, the Hausman-type test for panels with time effects is given by
~ _ o
HB,TE = nA,B,TEVA,lTEAB,TE7 (8.2.11)

and as n — 00, Hgrp —4 )(z,. For fixed T', V A rg can be consistently estimated by

n

=5 1 -~ 2 2 ~
Vare = i Z (G;TEMTVi,FEV;,FEMTGi,TE) ; (5.2.12)
i=1
where
i)i:FE = VT-_\D = (yi - 37) - (Xz - X)BFE—TE? (8.2.13)
and
« . _ _ 177
Girp = (X;— X)W, 05— (146,)7'Q,, [(Ik - Q;xMTX) } . (S.2.14)

Using the above estimate of VATE, a feasible statistic for testing the null hypothesis, H
given by (7.1), (in the case of panel regression models with time effects and T' > k) is given
by

~ -~ -~ I ~ 1 ~ ~
HB,TE =n (:BFEfTE - BTMGfTE> VA,TE </6FE7TE - /BTMGfTE> . (8-2-15)

S3



S.2.2 T>k

For panels with T' > k, we consider

AB,C = ﬁFE—TE - ﬁTMG—C:

where 3 rFE_TE 1S given by 1D and BTMG—C is the TMG-C estimator based on g}c as the

estimator of the time effects given by (/6.20]) and (6.17]), respectively. Using (/6.18]) and noting
that M, M+ X, = 0 we have

bo— ¢ = M: (% Z MiMTVi> (S5.2.16)
i=1

where v; = Xmiﬁ +u,;, and M, =n""! Z?:l M ;. Using 1) and partitioning éTMG_C =

. ~t
(Grma-c, Brug-c)'s we have

BTMG—C’ =

-1 ! 9

where Q,, is defined by (S.2.7). Also, since y, = a;77 + ¢ + X3, + v;, then noting that
n~t Z?:1 (1 + 5n)71 Q;IMTX¢ = I,,, we have

BTMG—C - 50 = 1+ Sn

n! Z Qi Mr(vi+ ¢ — &c)] :
i=1
Also using ([S.2.16)),

n(1 i(—; ) ZQ;xMT <$C - ¢> = anxMTM;1 (l ZMiMTVi)
n=1 °

where Q,,, is given by (S.2.8). Hence

1
1494,

IBTMG—C’ - /30 =

n ~ o 1 n
N QLMyw; — QMM [ =S MMy,
n Qm: TV Qnm T n n TV

i=1 =1

Y [0 8) 1@ @M M My,
=1

S4



or equivalently in terms of ; = v; — U,

BTMG—C —By=n" [(1 +0,)7'Q, — lecMTM;lMi] M,

i=1

since 157 [(1 +6,)7'Q), — Q:M,MTM:Mi] My = 0 given 13" M,'M, = I,.

n n

Using this result together with (S.2.9)), we now have
Ay = lzn:c;’. M,
B8,C n o 1,C TV,
where

Gio = (X: = X) ¥rp — [(146,)7Qu — MM, 'M1Q,,| .

and by Assumption W, = 0. Also by Assumptions [1| and |§|, plim, .. M, = M - 0,
and under the null hypothesis given by (7.1)), we have E(04|Gic) = 0, for all i and ¢.
Also by Assumptions (1| and @ u; and 1,5 are cross-sectionally independent so that vy
conditional on X; are also cross-sectionally independent. Then when T > k, as n — o0,
VAo =4 N(0,Vac), so long as

1 n
Vac=lim =Y E (G} Mr:#;MrGic) = 0. (S.2.17)
=1

n—o0 1, 4
Thus, when T" > k, the Hausman-type test for panels with time effects is given by
~/ - ~

and as n — 0o, Hgc —4 X% A consistent estimator of Va ¢ for a fixed T is given by

N 1 =/~ PO .
Vac= o ; (G;CMTVZ',FEV;FEMTGZ‘7C> (S.2.19)
where
Gio=(Xi—X) U,y — {(1 +6.)7Q,, — MiM;lMTQm} , (S.2.20)

with IizFE given by (S.2.13). Then the test statistics given by ([S.2.18) for panel regressions

with time effects and 7" > k can be consistently estimated by

I <1

Hﬁ,C =n (BFEfTE - BTMG70> VA,C (BFEfTE - BTMG70> : (8-2-21)
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S.3 Parameters of Monte Carlo experiments

The DGP for y;; and z;; is described in Section of the main paper. Section describes
different DGPs considered in the MC experiments, with their key parameters summarized in
Table [S.1] Section describes how the value of kr in the y;; process has been calibrated
by stochastic simulations to achieve a given level of overall fit, PR? for a given value of 7.
The simulated values of k2 for different DGPs are reported in Table [S.2}

S.3.1 Calibration of the parameters

1. Generation of y;; and x;; , fori =1,2,...,n,andt =1,2,...,T.

(a) z; are generated as heterogeneous AR(1) processes with p,, = 0 for all ¢ (in the
static case), and p,;, ~ I1DU(0,0.95) for the dynamic case. See (8.3) in the main
paper. The errors e, ;; of the x;; equation are generated according to the following

two distributions:

i. Gaussian with eg;; ~ IIDN(0,1), where E(e,;) = 0, E(e2;) = 1, and
Yo = E@i,n) —-3=0.

ii. Uniform distribution with e, ;; = v/12(3; — 1/2), where 3~ IIDU(0, 1), with
E(3i4) = 1/2 and Var(3:) = L Hence, E(e;it) = 0, E(eivit) = 1 and
(v3)'-(v=3)

12
) =3 =" 8=

5
7, = E(e;
(b) @iz ~IIDN(1,1), and 0%, ~ IID3 (22 + 1), with z;, ~ IIDN(0,1).

Tt

ul|o

(¢) The errors in the y;; equation are composed of three components, koe;. See
in the main paper. e; are generated as heterogeneous AR(1) processes given
by in the main paper, with p,, = 0 for all 7 (serially uncorrelated case) and
Pie ~ IIDU(0,0.95) (serially correlated case). The innovations to the v, <,
are generated as ¢, ~ ITDN(0,1), or IID3(x3 — 2). o7 are generated based on
different cases as described in Section with E(c%) = 1. The scalar, &, is
calibrated for each T to achieve a given level of fit, PR?* € {0.2,0.4}, See sub-
section below.

2. Generation of heterogeneous coefficients, 8; = (o, 8;)' for i = 1,2, ... n.

(a) 0; = (o, 3;) are generated using (8.4)) in sub-section of the main paper,
with ag = E(oy;) = 1 and 8, = E(f;) = 1.

S6



() (Do p3o)' € {0,0.5}, 02 = 0.2 and o2 € {0.2,0.5,0.75}.
(¢) €ia ~ IID(0,02,) and €3 ~ I1D(0,0%;), where 07, = (1 — p2,)oZ and o?; =

(1- P%,\)U%-

(d) For correlated heterogeneous coefficients we set

2 1/2 2 1/2
[} A
a = (—)\2 ) Tea = Par0as and @/Jﬁ = < £ ) Oep = PpAOB-

- ﬂ%a,\
Example 4 In the simple case where p;;, =0 and v, =0, Ty = iy + Tigeyit, then

d; = det(W',W,) = Tx,Mrx; = To?, (e,,Mre;,) . (S.3.1)
Using Lemma 6 in the online supplement of |Pesaran and Yamagata (2025), we have

E(e;IMTeix) = TT’(MT) =T — 17
E[(e},Mre;,)’] =v,Tr[Ms® Mr|+ Tr(MyMz) + 2Tr(M7)Tr(Mr),

where ® denotes the element-wise product, and vy, measures excess kurtosis of e, i ~ 11D(0,1)

gen by vy, = E(eiyit) — 3, which depends on the specific distribution of ey ;. Denote

1

the diagonal elements of Mt as my for t = 1,2,..,T, then my = 1 — 5, and we have

Tr[Mqy© Mg =31 m? = T-V° It is now easily seen that

T

T —1)2

E [(e;:cMTeix)Q} = (T —1)(T+1)+ %’
and hence .
Var(e;$MTeix) == 2(T — 1) + %

Using the above results we now have
e, . Mre, — (T —1)
1/2°
(T—-1)
2T - 1) + 2]

A = (S.3.2)

which can be viewed as a standardized version of d; = To?, (€, Mre;,), conditional on o?

1x’

namely

VVar (d;/To?) Var (d;)

%
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Table S.1: Summary of key parameters in the Monte Carlo experiments with Gaussian and
uniformly distributed errors

Gaussian Uniform
Case (1 (2 (3) (4) (1) (2) (3) (4)
E(a;) 11 1 1 11 1 1
E(B,) 1 1 1 1 1 1 1 1
E(c%) 11 1 1 1 1 1 1
E(0%) 11 1 1 11 1 1
Y 0 0 0 0 1.2 -1.2 -1.2 -1.2
E(d;) 2 2 2 2 2 2 2 2
Var(d;) 14 14 14 14 104 10.4 104 10.4
PR? 0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.4
o2 02 02 0.2 0.2 0.2 0.2 0.2 0.2
0% 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Pra 0 0.25 0.5 0.5 0 0.25 0.5 0.5
Prs 0 0.25 0.5 0.5 0 0.25 0.5 0.5
Ufa 0.2 0.19 0.15 0.15 0.2 0.19 0.15 0.15
afﬂ 0.5 0.469 0.375  0.375 0.5 0.469 0.375 0.375
Y, 0 0.11 0.22 0.22 0 0.11 0.22 0.22
Vg 0 0.18 0.35 0.35 0 0.18 0.35 0.35
Corr(a;, 8;,) 0 0.0625 0.25 0.25 0 0.0625 0.25 0.25

Notes: The values of key parameters under columns (1), (2) and (3) are set according to the baseline model
described in Section with zero, medium and large degrees of correlated heterogeneity, where p,z is
defined by in the main paper. For further details, see Section of the main paper. The calibrated

parameter values are reported for T' = 2, to save space.

S.3.2  Calibration of x? by stochastic simulation

The scaling parameter £ in (8.1) is set to achieve a given level of fit as measured by the
pooled PR?

. o n T
PR?> = lim PR?z =1 lim, oo n 1T Zi:l Zt:l Var(uit)

n—soo limy, oo n 17710 Zthl Var(ya — o — ¢,)

KJ2

= 1--— — : (S.3.3)
lim, oo n 17130 S Var(Bxi) + K2

Since T is fixed the value of k in general depends on 7" and we have (noting that Var(5,x;) =

E(Ba}) — [B(Bxa)])

H% = (1 _P]]_;R ) n%oo nT ZZ {E i [E(B; xzt)] } : (S.3.4)

i=1 t=1
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Due to the non-linear dependence of /3, on z; (through d;) we use stochastic simulations to

compute E(B22%) and E(S3,z:), which can be carried out in a straightforward manner since

the values of x; and (8, do not depend on s and can be jointly simulated using the relations

B3) and §3).
The total number of simulations is R, = 1,000 with n = 5,000 and T' = 2, 3,4, 5,6, 8. For

each replication r = 1,2, ..., R,,, we generate a new sample of BET) and {IE:)} given the DGP

set up in our paper. The random variables which are drawn independently across replications

are denoted with a superscript (r). The random variables that are drawn once and used for

all replications are denoted without a superscript (7).

1. Generate z;,

(a)

(r).

g’”ft as 1ID(0,1) according to the two distributions specified in

Section namely Gaussian or uniform distributions, and generate (02,)") as
2
I1D; {(zm> - 1] , where 2" are generated as ITDN(0, 1).

First generate e

T T

Generate

\_ e Mrell — (T 1)
V2AT -1+ % (T-1)?

where 7, depends on the chosen distribution: (i) with Gaussian distribution v, =

0, and (ii) with uniform distribution v, = —2.

I

Generate p;, = 0Vi for static x;, or ,01(;) ~ 11DU(0,0.95) for dynamic ;. Then
generate 65;) as ITDN(0,1), and mg) iteratively for t = —49, —48, ..., —1,0,1,...,T

for the dynamic case
57 1/2
o) =l (1= o) ot 1= ()] o,

") TIDU(0,2), f, = 0.9f,_1+(1—0.92)1/2y,,

and v, ~ IIDN(0,1), where z; _50 = 0 and f_50 = 0. The first 50 observations

are dropped, and {z;1, Z;2, ..., ;7 } are used in the simulations.

without or with interactive effects, v

2. Generate 3 ET)

(a)
(b)

Generate egg) as IIDN(0,0?%;) where 0?5 = (1 — p35)03.
Given 1)y, )\Er) and 652), set BZ(-T) =6, + 772(-;). Then 55’“) =B, + 7}52).
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3. Given 8\ and (', we then simulate

n

R T ) )
App = RO\ 1! Z Z (5510) (331(:)>

r=1 i=1 t=1

3

R T
By — R 11 Z Zﬁgr)x(r)

r=1 i=1 t=1
W 2
Var(B;xi) pr = Arr — Birp-

Then for given values of PR?* = 0.2 or 0.4, compute k% as

1— PR? —
Ko = (P—Rg) Var(B;xit) pr

Table S.2: Simulated values of k% for T' = 2,3,4,5,6,8

Gaussian Uniform

Case (1) (2) (3) (4) (1) (2) (3) (4)

There is no autoregressions or factors in ;.

T=2 14.02 1462 17.02 6.38 14.01 14.08 1530 5.74
T=3 14.00 14.61 16.56  6.21 14.00 14.10 15.16  5.69
T=4 14.00 14.58 16.24  6.09 14.00 14.13 15.06 5.65
T=5 14.00 1456  16.00  6.00 14.00 14.13 1498 5.62
T=6 14.00 1456 1583 5.93 14.00 1415 1493  5.60
T=38 14.00 14,50 1557 584 13.99 1414 1482 5.56
x; are generated as heterogeneous AR(1) processes.
T=2 13.98 14.62 1550 5.81 13.98 1462 1550 581
T=3 13.99 1461 1543 5.79 13.99 1461 1543 5.79
T=4 13.97 1458 1533 5.75 13.97 1458 1533  5.75
T=5 13.99 1456  15.26  5.72 13.99 1456 1526  5.72
T=6 14.01 1456 1522 5.71 14.01 1456 1522 5.71
T=38 13.98 1450 1510  5.66 13.98 1450 15.10 5.66
x; are generated as heterogeneous AR(1) processes with interactive effects.
T=2 23.95 2459 2547  9.55 23.94  24.02 2416  9.06
T=3 25.05  25.67 2648  9.93 25.07  25.20 2537 9.51
T= 2453 2514 2591 9.71 2455 2470 2488  9.33
T=5 24.89 2547 26.17  9.81 2491  25.056 2523 9.46
T=6 2436 2491 2558  9.59 24.34 2451 2471 9.27
T= 2320 2371 2430  9.11 23.20 2337 2357 884

Notes: The values of x% are computed according to stochastic simulations described in Section with
1,000 replications. The values of key parameters for different cases are summarized in Table [S-1}
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S.4 Monte Carlo evidence with Gaussian distributed

errors in the regressor

S.4.1 Comparison of FE, MG and TMG estimators

Table summarizes the MC results for the FE, MG and TMG estimators in panel data
models under uncorrelated heterogeneity (ps = 0), but with correlated heteroskedastic errors
(in the y;; equation), for T = 2,3,4,5,6,8 and n = 1,000, 2,000, 5,000 and 10,000. It gives

bias, RMSE and size for case (a) 02 = A2, on the left panel and for case (b) o2 = 2

x,it) on

the right panel of the tableF! As to be expected, the MG estimator performs very poorly
when T is ultra short, and suffers from substantial bias. In contrast, the bias of the TMG
estimator remains small even when T" = 2. Turning to the comparison of FE and TMG
estimators, we note that under both specifications of error heteroskedasticity, the bias of
FE and TMG estimators are close to zero, and both estimators have the correct size for all
T and n combinations. The main difference between FE and TMG estimators lies in their
relative efficiency (in the RMSE sense), when 7' is ultra short. For example, when 7" = 2 and
n = 1,000 the FE estimator is more efficient than the TMG estimator under case (b), whilst
the reverse is true under case (a). This ranking of the two estimators is also reflected in their
empirical power functions shown on the left and right panels of Figure [S.1], for T = 2,3,4,5
and n = 10,000. The empirical power functions for both estimators are correctly centered
around 5, = 1. But under heteroskedasticity of type (a), the empirical power function of the
TMG estimator is steeper and for 7' = 2 lies within that of the FE estimator, with the reverse
being true when error heteroskedasticity is generated under case (b) However, differences
between FE, MG and TMG estimators vanish very rapidly as n and T are increased.

As a general rule, the FE estimator performs well when heterogeneity is uncorrelated.
But in line with our theoretical results, the FE estimator suffers from substantial bias and
size distortions under correlated heterogeneity, irrespective of whether the errors are het-
eroskedastic. The degree of bias and size distortion of the FE estimator rises with the degree
of heterogeneity, ps. Table provides additional MC results for ps; = 0.25 and PR? =0.2
on the left panel and for pz = 0.5 and PR? = 0.4 on the right panel for sample size combina-
tions T' = 2, 3,4,5,6,8, and n = 1,000, 2,000, 5,000, 10,000. Comparing these results with
those already reported in Table [1] we also note that the FE estimator shows a higher degree
of distortion when PR? is increased from 0.20 to 0.40, with pp fixed at 0.50.

S1For details on the DGP and the rationale behind these specifications see Section in the main paper.
S2These results are in line with Proposition [3| and Example [2]in the main paper.
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Figure S.1: Empirical power functions for FE and TMG estimators of 3, (E(8;) = 5, = 1)
in panel data models without time effects and with uncorrelated heterogeneity, p; = 0, and
correlated heteroskedasticity (cases (a) and (b))
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Notes: For details of the DGP for the left and right panels, see footnote (i) to Table[S.3] For the FE estimator,
see footnote (ii) to Table For the TMG estimator, see footnotes (ii) and (iii) to Table
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S.4.2 Comparison of TMG and GP estimators for different expo-

nents, a and agp, used in the threshold values

Table compares small sample properties of TMG and GP estimators of 3, for different
choices of a and agp used for their computations, respectively. The results are for the
baseline model with correlated heterogeneity, but without time effects, for ultra short values
of T'= 2,3, and n = 1,000, 2,000, 5,000 and 10,000. The empirical power functions for
TMG and GP estimators are shown in Figures and [S.5] The figures suggest that both
estimators benefit from setting a and 2agp close to 1/3 value obtained from our theoretical
derivations. The TMG estimator is less sensitive to the choice of o as compared to the GP

estimator to agp. For further discussions see Section of the main paper.
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Table S.5: Bias, RMSE and size of TMG and GP estimators of 3, (E(3;) = B, = 1) for
different values of the parameters, a and agp, in the baseline model without time effects and
with correlated heterogeneity, p; = 0.5

T=2 T=3
T Size T Size
Estimator a/agp (x100)  Bias RMSE (x100) (x100)  Bias RMSE (x100)
n = 1,000
TMG 1/3 31.2  0.048 0.35 4.9 16.5 0.023 0.20 5.2
™G 0.35 29.6  0.045 0.36 4.6 15.0 0.020 0.21 5.0
™G 1/2 181 0.017 047 5.7 6.0 0.004 0.25 4.7
GP 0.35/2 126 0.017 0.51 5.5 15.0 0.045 0.20 5.9
GP 1/4 7.5 0.001 0.64 5.4 6.0 0.014 0.23 5.6
GP 1/3 4.2 -0.029 0.83 4.5 1.4 0.011 031 4.5
n = 2,000
T™MG 1/3 28.5 0.044 0.27 5.3 14.1 0.018 0.16 5.4
™G 0.35 26.8 0.041 0.28 5.3 12,7 0.016 0.16 5.3
T™MG 1/2 15.6  0.028 0.37 5.1 4.5 0.004 0.20 5.0
GP 0.35/2 11.2° 0.023 0.38 4.9 12,7 0.035 0.16 6.1
GP 1/4 6.4 0.035 0.50 4.7 4.5 0.009 0.18 5.0
GP 1/3 34 0031 0.70 5.8 0.9 -0.001 0.23 5.0
n = 5,000
™G 1/3 24.7 0.037  0.18 4.7 10.8 0.016 0.11 5.3
™G 0.35 23.1  0.034 0.19 4.4 9.5 0.014 0.11 5.1
™G 1/2 124 0.016 0.26 4.6 2.9 0.002 0.14 5.2
GP 0.35/2 9.6 0.018 0.26 4.6 9.5 0.029 0.10 5.1
GP 1/4 51 0.012 0.36 4.7 2.9 0.008 0.13 4.7
GP 1/3 2.5 0.009 0.52 5.2 0.5 0.002 0.16 3.9
n = 10,000
TMG 1/3 221 0.029 0.14 5.6 8.8 0.013 0.08 5.3
TMG 0.35 20.6 0.025 0.15 5.3 7.7 0.011 0.08 4.9
T™MG 1/2 10.5  0.009 0.21 4.7 2.1 0.002 0.10 4.8
GP 0.35/2 85 0.012 0.20 6.0 7.7 0.022 0.08 5.8
GP 1/4 4.3 -0.002 0.28 5.1 2.1 0.006  0.09 4.8
GP 1/3 2.0 0.002 041 4.3 0.3 0.001 0.12 5.2

Notes: (i) The GP estimator is given by in the main paper. For T = 2, GP compare d;/z with the
bandwidth h,, = Cepn=“¢*. agp is set to 1/3. Cgp = %min (6p,7p/1.34), where 6p and 7p are the
respective sample standard deviation and interquartile range of det(W;). For T' = 3, we continue using the
bandwidth h,, with Cgp = (d,)*/?. See Section in the main paper for details. (ii) For details of the
baseline model, see footnote (i) to Table [1| in the main paper. For the TMG estimator and its threshold,
see footnotes (ii) and (iii) to Table 7 is the simulated fraction of individual estimates being trimmed,

defined by (4.7) in the main paper.
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Figure S.2: Empirical power functions for TMG and GP estimator of 3, (E(3;) = 8, = 1)
for parameters o = 0.35 and agp = 0.35/2 in the baseline model without time effects and
with correlated heterogeneity, p; = 0.5
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Notes: For details of the baseline model without time effects, see footnote (i) to Table [1|in the main paper.
See also footnotes (ii) and (iii) to Table and footnote (i) to Table
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Figure S.3: Empirical power functions for TMG and GP estimator of 3, (E(3;) = B, = 1)
for parameters o = 1/3 and agp = 1/3 in the baseline model without time effects and with
correlated heterogeneity, pg = 0.5
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Notes: For details of the baseline model without time effects, see footnote (i) to Table [1|in the main paper.
See also footnotes (ii) and (iii) to Table and footnote (i) to Table
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Figure S.4: Empirical power functions for the TMG estimator of 5, (E(8;) = 8, = 1)
for different values of the threshold parameter, a € {1/3,0.35,1/2}, in the baseline model
without time effects and with correlated heterogeneity, p; = 0.5
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Notes: For details of the baseline model without time effects, see footnote (i) to Table [1|in the main paper.
See also footnotes (ii) and (iii) to Table
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Figure S.5: Empirical power functions for the GP estimator of g, (F(5;) = B, = 1) for
different values of the bandwidth parameter, agp € {0.35/2,1/4,1/3} in the baseline model
without time effects and with correlated heterogeneity, pz = 0.5
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Notes: For details of the baseline model without time effects, see footnote (i) to Table [1|in the main paper.
See also footnote (i) to Table [S.5]
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S.4.3 Comparison of TMG and GP estimators with correlated het-

eroskedasticity

Table provides additional MC results on small sample properties of TMG and GP estima-
tors of 3, in panel data models with correlated heterogeneity, ps = 0.5, as well as correlated
error heteroskedasticity which are generated as case (a) 0% = A7, and case (b) 0% = €2,
all 7 and ¢. These results are to be compared to the ones in Table[2]in Section [8.2.2)of the main

paper which are for random heteroskedasticity. The TMG estimator continues to perform

for

better than the GP estimator when T' = 2 or 3, and allowing for correlated heteroskedasticity

does not alter this conclusion.

Table S.6: Bias, RMSE and size of TMG and GP estimators of 5, (E(f;) = 5, = 1) in panel
data models without time effects and with correlated heterogeneity, ps; = 0.5, and correlated
heteroskedasticity (cases (a) and (b))

T=2 T=3
T Size T Size
Estimator (x100)  Bias RMSE (x100) (x100)  Bias RMSE (x100)

Case (a): 02 = X’

n = 1,000
TMG 31.2 0.049 0.25 5.4 16.5 0.023 0.16 4.9
GP 4.2 -0.012 0.53 4.7 2.0 0.000 0.22 4.3
n = 2,000
™G 28.5 0.044 0.19 5.6 14.1 0.018 0.13 5.7
GP 34 0.022 046 6.0 1.3 0.004 0.18 5.2
n = 15,000
TMG 24.7 0.036 0.13 4.5 10.8 0.016  0.09 5.5
GP 2.5 0.000 0.33 5.4 0.7 0.000 0.13 5.4
n = 10,000
™G 22.1  0.031 0.10 6.3 8.8 0.014 0.06 5.1
GP 2.0 0.004 025 4.3 0.5 0.000 0.09 4.9
Case (b): 07, = €2,
n = 1,000
TMG 31.2  0.050 0.37 5.5 16.5 0.024 0.21 5.1
GP 4.2 -0.018 0.85 5.1 2.0 -0.003 0.28 4.6
n = 2,000
TMG 28.5 0.043 0.28 5.7 14.1  0.020 0.16 5.1
GP 34 0038 0.72 54 1.3 0.003 0.22 4.7
n = 5,000
™G 24.7 0.033 0.19 4.8 10.8 0.014 0.11 5.3
GP 2.5 -0.007 0.53 5.9 0.7 -0.002 0.15 4.3
n = 10,000
TMG 22.1 0.032 0.14 5.7 8.8 0.013 0.08 5.5
GP 2.0 0.006 0.41 5.3 0.5 -0.001 0.11 4.5

Notes: (i) The data generating process is given by y; = a; + 3,24 + 0iteir, where o2, are generated as case
(a): 0% = A2, and case (b): 0, = €2, for all 4 and ¢. The errors processes for y;; and z;; equations are

7

chi-squared and Gaussian, respectively. x;; are generated as heterogeneous AR(1) processes. pg is defined
by in the main paper. For further details see Section in the main paper and Section (ii) For
the TMG estimator, see footnotes (ii) and (iii) to Table For the GP estimator, see footnote (i) to Table
7 is the simulated fraction of individual estimates being trimmed, given by in the main paper.
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S.5 The effects of increasing PR? on the small sam-
ple properties of TMG, TMG-TE and TMG-C, GP

and SU estimators

Table provides summary MC results with the higher level of fit, PR? = 0.4, for T' = 2 and
3 and n = 1,000, 2,000, 5,000, 10,000. These results are comparable with the ones reported
in Table [2 for the baseline model where PR? = 0.2. Table gives the same results for 3,
but under DGPs with time effects, and Table provides the results for the time effect ¢,
when 7' = 2, and the time effects, ¢, and ¢,, when T" = 3.

Table reports bias, RMSE and size for the TMG and GP estimators for models with
and without time effects, and for different x;; processes, for T' = 2 and n = 1,000, 2,000,
5,000, 10, 000.

Table S.7: Bias, RMSE and size of TMG, GP and SU estimators of 8, (E(3;) = B, = 1) in
panel data models without time effects and with correlated heterogeneity, pg = 0.5, and the
level of overall fit, PR? = 0.4

T=2 T=3
T Size 7 Size

Estimator (x100)  Bias RMSE (x100) (x100) Bias RMSE (x100)

n = 1,000
T™MG 312 0.049 0.22 5.4 16.5 0.023 0.13 5.6
GP 42 -0.014 0.51 4.6 2.0 0.001 0.17 4.7
SU 42 -0.028 0.99 4.9

n = 2,000
™G 285 0.044 0.17 5.7 14.1 0.020 0.10 5.9
GP 3.4 0.022 043 5.8 1.3 0.004 0.13 4.7
SU 3.4 0.006 0.85 9.5

n = 5,000
TMG 24.7 0.037  0.12 5.6 10.8 0.016  0.07 6.0
GP 2.5 0.007 0.32 5.3 0.7 0.000 0.09 5.1
SU 25 0.002 0.62 4.9

n = 10,000
TMG 22.1 0.030 0.09 6.9 8.8 0.013 0.05 6.1
GP 20 0.003 0.25 4.4 0.5 0.000 0.07 4.9
SU 2.0 0.004 0.50 5.1

Notes: (i) The data generating process is given by y;;: = o; + 5,2t + 0ireir with random heteroskedasticity,
pg is defined by in the main paper, and PR? is defined by . The errors processes for y;; and
x;+ equations are chi-squared and Gaussian, respectively, and x; are generated as heterogeneous AR(1)
processes. For further details see Section in the main paper and Section (ii) For the TMG
estimator, see footnotes (ii) and (iii) to Table For the GP estimator, see footnote (i) to Table The
SU estimator is proposed by |Sasaki and Ural (2021)), with the same threshold as the GP estimator. 7 is the
simulated fraction of individual estimates being trimmed, defined by in the main paper. The estimation
algorithm for the SU estimator is not available for T' = 3, denoted by “...”.
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Table S.8: Bias, RMSE and size of TMG-TE, TMG-C, GP and SU estimators of 5, (E(8;) =
By = 1) in panel data models with time effects, correlated heterogeneity, ps = 0.5, and the
level of overall fit, PR? = 0.4

T=2 T=3
T Size 7 Size

Estimator (x100)  Bias RMSE (x100) (x100) Bias RMSE (x100)

n = 1,000
TMG-TE 31.2  0.049 0.22 5.5 16.5 0.023  0.13 5.6
TMG-C 16.5 0.023 0.13 5.9
GP 4.2 -0.018 0.52 4.0 2.0 0.001 0.17 4.6
SU 4.2 -0.032 1.02 5.4

n = 2,000
TMG-TE 28.5 0.044 0.17 5.6 14.1 0.020 0.10 5.7
TMG-C 14.1 0.020 0.10 5.7
GP 34 0.022 044 5.2 1.3 0.004 0.13 4.7
SU 3.4 0.007  0.86 5.8

n = 5,000
TMG-TE 247 0.037  0.12 5.6 10.8 0.016  0.07 6.0
TMG-C 10.8 0.016  0.07 6.0
GP 2.5 0.007  0.32 5.0 0.7 0.000 0.09 5.1
SU 2.5 0.004 0.63 4.7

n = 10,000
TMG-TE 22.1  0.030 0.09 6.9 8.8 0.013 0.05 6.1
TMG-C 8.8 0.013 0.05 6.1
GP 2.0 0.003 0.25 4.3 0.5 0.000 0.07 4.9
SU 2.0 0.007 0.50 5.4

Notes: (i) The data generating process is given by y;; = «; + ;T + o€+ with random heteroskedasticity,
pg is defined by in the main paper, and PR? is defined by . Time effects are set as ¢, =t for
t=1,2,...T—1, and ¢ = —T(T — 1)/2. The errors processes for y;; and z;; equations are chi-squared
and Gaussian, respectively, and x;; are generated as heterogeneous AR(1) processes. For further details see
Section in the main paper and Section (ii) The TMG-TE estimators of @y and ¢ are given by
and in the main paper, respectively, and their asymptotic variances are given by and
, respectively. The TMG-C estimators of 8y and ¢ are given by and in the main paper,
respectively, and their asymptotic variances are given by and in the main paper, respectively.
For the trimming threshold, see footnote (iii) to Table (iii) GP and SU estimators are proposed by
Graham and Powell (2012) and [Sasaki and Ural (2021). For their trimming threshold, see footnote (i) to
Table 7 is the simulated fraction of individual estimates being trimmed, defined by in the main
paper. “...” denotes the estimation algorithms are not available or not applicable.

Table S.9: Bias, RMSE and size of TMG-TE and GP estimators of the time effects, ¢; and
¢y, in panel data model with correlated heterogeneity, pg = 0.5, and the overall fit, PR?>=0.4

n = 1,000 n = 5,000
Estimator Bias RMSE Size (x100) Bias RMSE Size (x100)
T=2 T=2
p, =1 TMG-TE 0.002 0.06 6.1 -0.001 0.02 4.7
GP 0.001 0.33 7.1 -0.005 0.21 6.9
T=3 T=3
0, =1 TMG-TE 0.165 0.00 6.5 0.108 0.00 2.9
GP 0.020 0.00 9.1 0.007 0.00 4.1
Py =2 TMG-TE 0.165 0.00 6.5 0.108 0.00 2.9
GP 0.020 -0.01 8.1 0.007 0.00 3.7

Notes: See the notes to Table

523



oY ST L
908 ‘Iogetr}se HIALL, oYl 10 (11)

1oded urew oy} Ul

[8°gl a1qeT, 03 (1) 930mw00] @08 ‘T0yRTIISE HI-HIAL I 104

) £q pougop

‘pourtuLI} SUTO( SOTRUUIISS [BNPIAIPUI JO UOIJORI] PIYRIIUIS

o[qRT, 09 (1) 90uwj00] 90 ‘10rRMNSE JH) Y 104 [g'g|o1qr, 03 (1) 9j0ul00]
uorpag pue toded ureur oy ut|g 1 g UOIIAG 99s S[rejop LYY 10 ¢/(T — L)L~ = L¢ pue ‘1 — 1 g'T=1
10] 7 = %@ se 19s oIe $1000 oW, 'A}IDIISBPISOI9)9Y WOpUeRl Ym Ho*o + Hx'lg + o + o =

#fi £q uoA1d st sseoo1d Jurjerousd eyep oy, (1) :S0j0N

L'y 0L¥7'0 8000~ 6T L'y ¢65'0  VIOO 9'C 184 16L°0  ¥00°0- €€ 4 8960 L100- TV do

g'q L9T°0 0200 80g 67 02’0 9200 ¥'€C v 61€°0 6200 692 49 €EF'0  LEO'O 6°6C HL-DINL

§900]j0 OATIORINUI [JIM s9s50001d #2 (T)YY snoaualo10)ol ()

vy 0T¥F’'0 €000 0% 06 LgS0 8000 9T s ¢IL’0  2e00 v'e 6'¢ 780 ¥E00- TV do

LS €PT°0 8200 T'CC Ly P8T'0  LEO'0 L'¥C 9'¢ Lg0 00 9'8¢ 0¢ €960 8700 ¢TTIE HL-DINL

sosseoo1d # (T)Yy snoouaoialoy (q)

7'a 1,20 6000 61T 7'a 96¢’'0  1000- ¥'¢C Y 967’0 9200 ¢T'€ 87 8890 G000~ TV do

G'L 60T°0 800 68T 89 1710 8€00 T'TC 1L 6020 0900 97¢ 67 990’0 G900 €'L¢ HL-DINL

#fi ur s10119 patenbs-1) (®)

P UL s3oage oty YA I1

87 6970 0100~ 6T ¥ ¥8¢°0  LI00 9T 87 9.0 2000 €€ 67 8€6'0 L100- TV do

LS ¢9T'0 6100 80T TG €150 G200 ¥'€C Ly 60€0 8200 6'9¢ e €TV'0  LEO'0 6°6C DINL

$900Jj0 dATIORIUIL TJIM sassaoo1d #z ()Y snosualo10lo] (p)

€V 807’0 2000 0% s €90 6000 9T 8¢ 10L°0  T€00 7€ Qv 0€8°0 6800~ TV do

9'G €PT°0 6200 T1'CC L'y ¥8T'0  LE0'0 L'¥¢ €q ¢Lc0 ¥w0'0  9'8¢ 67 €6€°0  8¥0°0 T'I€ DINL

sossooo1d #x (T)y snoouaSo1ajof] (o)

Ly 2920  €000- 61T Ly 8€E€0 €000 7¥¢C 87 167°0  ¢I00 ¢¢€ 67 6990 8000 07 do

9 G0T'0 €800 68T 8'G 8ET'0  6£00 T'1C 1 6610 6V00 S'7C 8¢ 09¢'0 1900 €'LC DINL

#fi ur s10110 parenbs-1q)) (q)

9'¢ 7.20 2000 6T 9'G €re’0 1000 ¥'¢C (Y 877’0 7200 T€ 97 8G4'0 G100 07 do

el 80T'0  7€0°0 68T 9 6610 6£00 T'1C LS 002’0 2800 9'7C €q €9¢'0 1900 €'LC DINL

i ur s10110 ueISSneY) (®)

it 19919 W) MO T

(00Tx) dSWY  serd  (001x)  (001x) HSIWY serd  (00Tx)  (00Tx) dSWY serg  (001x)  (00Tx) ASINY serg  (00Tx)  Jojewinsy
9715 Y 9715 Y 971 Y 9713 ¥

00001 = u 000G = u 000z = u 000°T = u
¢ =L 107 ‘T0=zd ‘VJ [[RISAO JO [9AJ] B1) PUE ‘G'() = 0 ‘A)101a8019107 PAYRIPIIND M SUOIRIYIAdS
pout Juateptp wpun (1 = °%g = (*g)xg) %9 jo siopewnso I-HINL Pue JH “DINL Jo 9715 pue FSINY ‘Serd 0T'S °[qRL

524



S.6 Monte Carlo evidence when the errors of z; are

uniformly distributed

In this section, the DGP is generated using the baseline model without time effects, but with
the errors in the x;; equation drawn from a uniform distribution, as compared to the Gaussian
errors used in the baseline model. Table compares small sample performance of the
TMG estimator of 3, using different o € {1/3,0.35,1/2} for threshold values with correlated
heterogeneity, pg = 0.5 for ' = 2,3, and n = 1,000, 2,000, 5,000 and 10,000. Table
reports bias, RMSE and size of FE, MG and TMG estimators of 3, for 7" = 2,3,4,5,6,8,
and n = 1,000, 2,000, 5,000 and 10, 000.

The choice of the error distribution does not seem to be consequential.

Table S.11: Bias, RMSE and size of the TMG estimator of 3, (F(f;) = 5, = 1) for different
values of the threshold parameter, «, in the baseline model without time effects and with
correlated heterogeneity, pg = 0.5, using uniformly distributed errors in the x;; equation

T=2 T=3
7 Size T Size
Estimator ~«  (x100) Bias RMSE (x100) (x100) Bias RMSE (x100)
7= 1,000
T™MG 1/3 270 0.051 0.33 5.0 12.6 0.027  0.20 5.2
TMG 0.35 255 0.048 0.34 5.0 11.3 0.025 0.20 5.3
™G 0.50 15.2 0.025 043 4.4 4.0 0.012 0.23 4.9
n = 2,000
TMG 1/3 244 0.045 0.26 5.2 10.5 0.024 0.15 5.6
™G 0.35 22.9 0.042 0.27 5.2 9.3 0.022 0.15 5.1
TMG 0.50 13.0 0.024 0.34 5.0 3.0 0.012 0.18 5.1
n = 5,000
TMG 1/3 209 0.041 0.18 6.0 7.7 0.015 0.10 5.0
T™MG 0.35 19.5 0.038 0.19 5.9 6.7 0.013 0.10 5.3
T™MG 0.50 10.3 0.020 0.25 5.0 1.9 0.006 0.12 4.9
n = 10,000
TMG 1/3 187 0.036 0.13 5.8 6.2 0.011 0.07 5.0
TMG 0.35 174 0.034 0.14 5.8 5.3 0.009 0.07 5.2
TMG 0.50 8.7 0.024 0.19 4.2 1.3 0.002 0.09 5.0

Notes: (i) The baseline model is generated as y;; = «; + 5,2+ + uit, where the errors processes for y;; and x;;
equations are chi-squared and uniformly distributed, respectively, x;; are generated as heterogeneous AR(1)
processes, and pg is defined by in the main paper. For further details see Section in the main
paper and Section (ii) For the TMG estimator and its threshold, see footnotes (ii) and (iii) to Table
7 is the simulated fraction of individual estimates being trimmed, defined by in the main paper.

525



~Toded urewr oy ur (L°7) £q
OqeT, 0 (1) pue (II) $9)0UI00J 998 “PIOYSII) $IT PUL 10JRTNSI HINT,
o1qe], 01 (Tr) 9j0u00] 998 ‘s10jRUISd HIN pue Hq 104 (1) [11°go[qrl, 01 (1) 910u00] 908 ‘Topow dUT[AsRY ) JO S[IROP 104 (1) :S9J0N

pouyep ‘powrtuii} SUID( SOYUI}SO [BNPIAIPUL JO UOIIORI] PIYE[NIS 9} ST L
9} 104

[ €7 0001 €00 €00 NI} 10000 1000  61T°0 70 97 ¥V o 67 €00 €00 c0'0 T00°0  TOO'0 0000 70 8
¢'q 06 0001 €00 €00 710 10000 0000 V10 80 [aY 0¢ 0¢ €00 €00 c0'0 000°0  000°0 00070 80 9
[ ¢'G 0001 700  ¥00 91°0 €000 1000 09T°0 7'l 9'¢ 67V TV 700 700 €00 T00°0  TOO'0 0000 71 g
9'¢ ¢S 0001 S0'0 900 61°0 7000 2000 6810 9¢C 9'¢ 9¢ 7'¢ S0°0 900 €00 000°0 2000 00070 9¢C i
0'¢ 8% 0001 200 1¢°0 720 IT0°0  900°0- 6¢£¢°0 ¢9 LY 67 IV 200 1¢°0 700 000°0  900°0- 00070 ¢9 €
6'¢ ¢'¢c 0001 €10 6V'9cc  LE0 9¢0'0  ¢L6'S  99¢°0 L'81 8T ¢¢c 8¢ ¢l'0 1.°¢c¢ 900 €00°0  €g6'S 0000 L'81 [4
000°0T = u
97 0G 686 700  ¥00 [N} 0000 TO0'0- STIT0 L0 ‘1 67V ¢¢ 700  ¥00 €00 T00°0- T0O00- 0000 L0 8
vy 67 ¢66 ¢0'0  S00 710 10000 0000 T¥T°0 ¢1 67 e T¢ S00 <00 €00 000°0 0000 00070 ST 9
8V 'S 766 S0°0 900 91°0 7000 1000 0910 1'cC LY 76 6¢ S0°0 900 700 T00°0  TOO'0 0000 1'cC g
LV 0'¢ 766 2000 800 61°0 2000 000°0  06T°0 9'¢ Y s ¢¢ 2000 800 700 100°0  000°0 €000 9'¢ ¥
0'¢ 8¢ 966 010  S¢0 rall) ¢10'0  €00°0 0vco L'L 97 6'¢c V¢ 010 €20 €00 T00°0 €000 TOO0 L'L €
19 ¢'¢c  L'66 LT°0  PCELT  LE0 1700 6420~ S9¢°0 6°0C 1'e ¢c 97 LT°0  ARTLT 200 7000 LLZ'0- 1000 6°0C 4
000G =u
[ ¢S 6'LL 900 900 ¢T'0 T00°0  T000- SQIT0 1 e e LV 900 900 700 T00°0- TO0'0- 0000 ¢1 8
09 6'¢ 18 2000 800 ST°0 100°0  ¢00°0- O¥I'0 9'C ¢9 6 67 200 800 <G00 ¢00°0- <¢00°0- T00°0- 9'C 9
97V Vv 8LL 80°0  60°0 LT°0 0000 900°0- 691°0 9'¢ 97 97 19 80°0  60°0 90°0 G00°0- 900°0- €000~ 9'¢ q
97V 97 ¢'1I8 010 €10 020 0100 €000  88T°0 L9 LV 87V ¢V 010 €10 90°0 ¢00'0 €000 00070 PR ¥
9'¢ T's 618 ¥I°0 970 frali) ¥¢0'0 €000  0FC0 G0t e e 9¢ ¥I°0 S0 80°0 900°0  €00°0 00070 gor €
[ 0¢ 078 Gc’0  c¢roL 8¢0 ¢v0'0  CIT'T  19€0 7've 0'¢ 0C 67 ¥¢0 L9869 CI°0 ¢00'0  €0T'T  €00°0- 7've (4
000°'¢=1u
"¢ 9'G¢ 687 800 800 €10 ¢00'0 000°0  AITO 1'c ¥'a 9¢ V¢ 80°0 800 90°0 0000 TOO'0- €000~ 1'c 8
9'¢ ¢q  LI9 600 010 91°0 €000 100°0- ¢P1°0 7'e [ ¢q € 600 010 200 100°0- €000~ T000- 7'e 9
A €9 909 IT°0  ¢T0 810 ¢00°0 000°0 8STO 8TV 7'a €6 T9 IT0 ¢TI0 80°0 100°0- 0000 €000 8V q
¢ 87V TI'¥7S ¥I°0  LTO 120 7100 7000 6810 &L LV 87V TG €10 LT0 60°0 €00°0 €000 0000 &L i
e 9%  9°LG 610 290 L2°0 L2000  ST0°0- €¥C0 9Cl [ Sv LY 6T°0 19°0 10 G00°0  ST0°0- 2000 9Cl ¢
[ 0¢c 109 ¢e’0  ST06T 070 1600 GE9'7- L9¢°0 0'LT 87 0c ¢g¢ 160  PL'S8T LT0 100°0 6677~ €000 0°LT (4
000'T=1u
DINL  DOIN HA DINL DN Gl DINL - DOIN G| DINL DINL  OIN HA DINL - DOIN CKl DINL ~ DOIN CK] DINL L
(001 %) o718 ASINY serq (001x) ¥ (001 %) 2718 HASINY serq (001x) ¥
G0 = 9d :£y10u08010907 Paje[EIIO)) = 9d :£yroua8ora)er] paje[erIodu)

uorjenbs #r oY) Ul SIOLIS PIINLIISIP A[ULIOJIUN SUIST ‘)00
ow) oYM [ppowt surfpseq oy ut (T = % = (*¢)z) % jo stoyewnyso HNT, pue HIN ‘A JO 0z1s pue HSINY ‘Serd :g1'S d[qeL

526



S.7 Monte Carlo evidence of estimation with interac-

tive effects in the regressor

To further examine the robustness of TMG-TE and TMG-C estimators to the choice of DGP,

we generate the regressor, x;;, with interactive effects, namely
2\1/2
it = Qi(1 = pi) + Via St + Pigiz + (1= p5) " i,

where v,, ~ IIDU(0,2), f; = 0.9f,1 + (1 — 0.9)Y2v,, and v; ~ IIDN(0,1) for t =
—49,-48, ..., —1,0,1,...,T, with f_50 = 0. We also calibrate s in the outcome equation
given by in the main paper, to achieve PR? = 0.2 by stochastic simulation (see Table
. The rest of the parameters are set as in the baseline model. See Section in the
main paper for details.

Tables summarize the results for TMG-TE, TMG-C, GP and SU estimators
of B, and the time effect ¢; when 7" = 2, and the time effects ¢, and ¢, when 7" = 3, for
T =2,3 and n = 1,000, 2,000, 5,000 and 10, 000.

The comparative performance of TMG-TE and GP estimators is unaffected by the addi-
tion of interactive effects to the z; process. The inclusion of interactive effects, by increasing
the variance of x;, results in improved estimates with a higher degree of precision, and a
smaller number of estimates being trimmed. This can be seen in the estimates of 7 (the
fraction of estimates trimmed) which are slightly lower than those reported in Table 3] in
the main paper for the baseline model. The bias is also slightly smaller but the RMSE is
larger. The RMSE of TMG-TE estimator of ¢, and ¢, are also higher as compared with
those reported in Table in the main paper.

The comparative empirical power functions for 5, and ¢; and ¢, are shown in Figures
[S.6][S-8 As can be seen from Figure [S.6 the TMG-C estimator of §, has marginally higher
power than the TMG-TE estimator when x;; includes interactive effects, compared to the
baseline model without interactive effects where TMG-TE and TMG-C estimators have very

similar power functions. See Figure [S.9
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Table S.13: Bias, RMSE and size of TMG-TE, TMG-C, GP and SU estimators of 5, (E(8;) =
By = 1) in panel data models with time effects, correlated heterogeneity, p; = 0.5, and
interactive effects in the x;; equation

T=2 T=3
T Size T Size

Estimator (x100) Bias RMSE (x100) (x100) Bias RMSE (x100)

n = 1,000
TMG-TE 29.9 0.037 0.43 5.2 13.1 0.022 0.26 4.8
TMG-C 13.1 0.020 0.25 5.0
GP 4.2 -0.017 097 4.4 0.5 0.016 0.36 5.1
SU 4.2 -0.060 1.93 5.9

n = 2,000
TMG-TE 26.9 0.029 0.32 4.2 10.7 0.012 0.19 3.8
TMG-C 10.7 0.011  0.18 4.2
GP 3.3 -0.004 0.79 4.4 0.4 0.000 0.27 4.9
SU 3.3 -0.012 1.55 5.2

n = 5,000
TMG-TE 23.4 0.026 0.22 4.9 8.1 0.009 0.13 3.8
TMG-C 8.1 0.008 0.12 4.3
GP 2.5 0.014 0.59 4.7 0.2 0.002 0.18 4.2
SU 2.5 0.059 1.15 4.9

n = 10,000
TMG-TE 20.8 0.020 0.17 5.5 6.5 0.008 0.10 4.7
TMG-C 6.5 0.007 0.09 .
GP 1.9 -0.008 0.47 4.7 0.1 0.001 0.13 5.5
SU 1.9 -0.030 0.91 4.9

Notes: (i) The data generating process is given by y;;: = «;+ ¢, + 8,2+ +0irei with random heteroskedasticity,
x;; are generated as heterogeneous AR(1) processes with interactive effects, and pg is defined by in the
main paper. Time effects are set as ¢, =t for t = 1,2,...,T—1, and ¢ = —T(T —1)/2. The errors processes
for y;; and x;; equations are chi-squared and Gaussian, respectively. For further details see Section [8.1.3]in
the main paper. (ii) For TMG-TE and TMG-C estimators, see footnote (ii) to Table For GP and SU
estimators, see footnote (iii) to Table 3| # is the simulated fraction of individual estimates being trimmed,
given by in the main paper. “...” denotes the estimation algorithms are not applicable or available.

Table S.14: Bias, RMSE and size of TMG-TE and GP estimators of the time effects, ¢; and
¢y, in panel data models with correlated heterogeneity, ps = 0.5, and interactive effects in
the z;; equation

n = 1,000 n = 5,000
Estimator Bias RMSE Size (x100) Bias RMSE Size (x100)
T=2 T=2
¢ =1 TMG-TE 0.000 0.13 4.6 -0.005 0.06 4.5
GP 0.017 0.72 7.6 0.007 0.44 6.2
T=3 T=3
o =1 TMG-TE 0.131 0.00 13.2 0.081 0.00 6.0
GP 0.005 0.01 18.1 0.002 0.00 8.4
¢, =2  TMG-TE 0.131 0.01 14.9 0.081 0.00 6.7
GP 0.005 0.00 17.5 0.002 0.00 7.9

Notes: For details of models with time effects, where x;; are generated as heterogeneous AR(1) processes
with interactive effects, see footnote (i) to Table For the TMG-TE estimator, see footnote (ii) to Table
[S.8 For the GP estimator, see footnote (i) to Table
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Figure S.6: Empirical power functions for TMG-TE, GP, SU and TMG-C estimators of j3,
(E(B;) = By = 1) in panel data models with time effects, correlated heterogeneity, ps = 0.5,
and interactive effects in the x; equation
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For GP and SU estimators, see footnote (iii) to Table [S.8|
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Figure S.7: Empirical power functions for TMG-TE and GP estimators of the time effect
¢; = 1 in panel data models with correlated heterogeneity, ps = 0.5, and interactive effects
in the z;; equation
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Figure S.8: Empirical power functions for TMG-TE and GP estimators of the time effect
¢ = 2 in panel data models with 7" = 3, correlated heterogeneity, pz = 0.5, and interactive
effects in the z;; equation
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S.8 Empirical power functions for TMG-TE, TMG-C,
GP and SU estimators in the baseline model with

time effects and correlated heterogeneity

Figures show empirical power functions for TMG-TE, GP, SU (for T" = 2) and
TMG-C (for T' = 3) estimators of (3, and the time effects, ¢; and ¢,, for the baseline model
with correlated heterogeneity, pg = 0.5, as discussed in Section of the main paper.

Figure S.9: Empirical power functions for TMG-TE, GP, SU and TMG-C estimators of
Bo (E(B;) = By = 1) in the baseline model with time effects and correlated heterogeneity,
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Figure S.10: Empirical power functions for TMG-TE and GP estimators of the time effect
¢, = 1 in the baseline model with correlated heterogeneity, pz = 0.5
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Figure S.11: Empirical power functions for TMG-TE and GP estimators of the time effect
¢y = 2 in the baseline model with 7" = 3 and correlated heterogeneity, pg = 0.5
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Notes: For details of the baseline model with time effects, see footnote (i) to Table [3[in the main paper.
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